{"title":"Limosilactobacillus fermentum CGMCC 1.7434 和 Debaryomyces hansenii GDMCC 2.149 与超声波处理协同作用,可有效降解风干鸭体内的亚硝酸盐。","authors":"Weitao Zhao, Xiankang Fan, Zihang Shi, Yangying Sun, Zhen Wu, Xiaoqun Zeng, Wei Wang, Changyu Zhou, Qiang Xia, Zhaoshan Wang, Daodong Pan","doi":"10.1016/j.psj.2024.104395","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrites in meat products are important food additives with coloring, antibacterial and antioxidant effects, but excessive intake of nitrites can pose health risks, including an increased risk of cancer due to the formation of carcinogenic nitrosamines. In the present study, Limosilactobacillus fermentum CGMCC 1.7434 was screened and the effects of it and Debaryomyces hansenii GDMCC 2.149 and their combination on nitrite degradation were investigated. It was found that the co-culture of L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 significantly enhanced nitrite degradation (99.58%). The findings on salt and ethanol tolerance suggest suitability for application in meat fermentation processes. Scanning electron microscopy and additional data indicate that D. hansenii GDMCC 2.149 facilitates the growth, acid production, adhesion, secretion of AI-2 signaling molecules, and biofilm formation of L. fermentum CGMCC 1.7434. Metabolomics analysis suggests that these microorganisms reduce nitrite levels by converting NH<sub>3</sub> derived from nitrite into L-glutamine, which is further transformed into N-nitroso compounds and their downstream derivatives through the ABC transporter pathway, the TCA cycle, and the amino acid metabolism pathway. Microbial community analyses showed that L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 were successfully inoculated into air-dried ducks, becoming dominant strains and effectively inhibiting the growth of pathogenic bacteria. Furthermore, during the processing of air-dried duck, the combination of ultrasonic cavitation (250 W, 4 min, 30°C, 40 kHz) with the co-fermentation of L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 effectively reduced nitrite content (84.55%) and TVB-N levels in the meat, without compromising color or TBARS values. This is crucial for understanding the mechanism of nitrite degradation by LAB in synergy with yeast and for the advancement of low-nitrite air-dried duck products.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"104395"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Limosilactobacillus fermentum CGMCC 1.7434 and Debaryomyces hansenii GDMCC 2.149 synergize with ultrasound treatment to efficiently degrade nitrite in air-dried ducks.\",\"authors\":\"Weitao Zhao, Xiankang Fan, Zihang Shi, Yangying Sun, Zhen Wu, Xiaoqun Zeng, Wei Wang, Changyu Zhou, Qiang Xia, Zhaoshan Wang, Daodong Pan\",\"doi\":\"10.1016/j.psj.2024.104395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrites in meat products are important food additives with coloring, antibacterial and antioxidant effects, but excessive intake of nitrites can pose health risks, including an increased risk of cancer due to the formation of carcinogenic nitrosamines. In the present study, Limosilactobacillus fermentum CGMCC 1.7434 was screened and the effects of it and Debaryomyces hansenii GDMCC 2.149 and their combination on nitrite degradation were investigated. It was found that the co-culture of L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 significantly enhanced nitrite degradation (99.58%). The findings on salt and ethanol tolerance suggest suitability for application in meat fermentation processes. Scanning electron microscopy and additional data indicate that D. hansenii GDMCC 2.149 facilitates the growth, acid production, adhesion, secretion of AI-2 signaling molecules, and biofilm formation of L. fermentum CGMCC 1.7434. Metabolomics analysis suggests that these microorganisms reduce nitrite levels by converting NH<sub>3</sub> derived from nitrite into L-glutamine, which is further transformed into N-nitroso compounds and their downstream derivatives through the ABC transporter pathway, the TCA cycle, and the amino acid metabolism pathway. Microbial community analyses showed that L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 were successfully inoculated into air-dried ducks, becoming dominant strains and effectively inhibiting the growth of pathogenic bacteria. Furthermore, during the processing of air-dried duck, the combination of ultrasonic cavitation (250 W, 4 min, 30°C, 40 kHz) with the co-fermentation of L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 effectively reduced nitrite content (84.55%) and TVB-N levels in the meat, without compromising color or TBARS values. This is crucial for understanding the mechanism of nitrite degradation by LAB in synergy with yeast and for the advancement of low-nitrite air-dried duck products.</p>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"103 12\",\"pages\":\"104395\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.psj.2024.104395\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104395","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Limosilactobacillus fermentum CGMCC 1.7434 and Debaryomyces hansenii GDMCC 2.149 synergize with ultrasound treatment to efficiently degrade nitrite in air-dried ducks.
Nitrites in meat products are important food additives with coloring, antibacterial and antioxidant effects, but excessive intake of nitrites can pose health risks, including an increased risk of cancer due to the formation of carcinogenic nitrosamines. In the present study, Limosilactobacillus fermentum CGMCC 1.7434 was screened and the effects of it and Debaryomyces hansenii GDMCC 2.149 and their combination on nitrite degradation were investigated. It was found that the co-culture of L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 significantly enhanced nitrite degradation (99.58%). The findings on salt and ethanol tolerance suggest suitability for application in meat fermentation processes. Scanning electron microscopy and additional data indicate that D. hansenii GDMCC 2.149 facilitates the growth, acid production, adhesion, secretion of AI-2 signaling molecules, and biofilm formation of L. fermentum CGMCC 1.7434. Metabolomics analysis suggests that these microorganisms reduce nitrite levels by converting NH3 derived from nitrite into L-glutamine, which is further transformed into N-nitroso compounds and their downstream derivatives through the ABC transporter pathway, the TCA cycle, and the amino acid metabolism pathway. Microbial community analyses showed that L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 were successfully inoculated into air-dried ducks, becoming dominant strains and effectively inhibiting the growth of pathogenic bacteria. Furthermore, during the processing of air-dried duck, the combination of ultrasonic cavitation (250 W, 4 min, 30°C, 40 kHz) with the co-fermentation of L. fermentum CGMCC 1.7434 and D. hansenii GDMCC 2.149 effectively reduced nitrite content (84.55%) and TVB-N levels in the meat, without compromising color or TBARS values. This is crucial for understanding the mechanism of nitrite degradation by LAB in synergy with yeast and for the advancement of low-nitrite air-dried duck products.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.