{"title":"生理学和微观结构分析揭示了甲酸延迟木薯采后生理退化的机制","authors":"Yannian Che, Zhongping Ding, Chen Shen, Alisdair R Fernie, Xiangning Tang, Yuan Yao, Jiao Liu, Yajie Wang, Ruimei Li, Jianchun Guo","doi":"10.3390/antiox13101245","DOIUrl":null,"url":null,"abstract":"<p><p>Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (<i>v</i>/<i>v</i>) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physiological and Microstructure Analysis Reveals the Mechanism by Which Formic Acid Delays Postharvest Physiological Deterioration of Cassava.\",\"authors\":\"Yannian Che, Zhongping Ding, Chen Shen, Alisdair R Fernie, Xiangning Tang, Yuan Yao, Jiao Liu, Yajie Wang, Ruimei Li, Jianchun Guo\",\"doi\":\"10.3390/antiox13101245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (<i>v</i>/<i>v</i>) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13101245\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101245","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Physiological and Microstructure Analysis Reveals the Mechanism by Which Formic Acid Delays Postharvest Physiological Deterioration of Cassava.
Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (v/v) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.