{"title":"布福他林通过阻断胶质母细胞瘤的 ITGB4/FAK/ERK 通路诱导氧化应激介导的细胞凋亡","authors":"Junchao Tan, Guoqiang Lin, Rui Zhang, Yuting Wen, Chunying Luo, Ran Wang, Feiyun Wang, Shoujiao Peng, Jiange Zhang","doi":"10.3390/antiox13101179","DOIUrl":null,"url":null,"abstract":"<p><p>Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505062/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma.\",\"authors\":\"Junchao Tan, Guoqiang Lin, Rui Zhang, Yuting Wen, Chunying Luo, Ran Wang, Feiyun Wang, Shoujiao Peng, Jiange Zhang\",\"doi\":\"10.3390/antiox13101179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505062/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13101179\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma.
Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.