高度水分散的天然富勒烯与 Pluronic 聚合物涂层作为新型纳米抗氧化剂,可增强抗氧化活性。

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hyeryeon Oh, Jin Sil Lee, Panmo Son, Jooyoung Sim, Min Hee Park, Young Eun Bang, Daekyung Sung, Jong-Min Lim, Won Il Choi
{"title":"高度水分散的天然富勒烯与 Pluronic 聚合物涂层作为新型纳米抗氧化剂,可增强抗氧化活性。","authors":"Hyeryeon Oh, Jin Sil Lee, Panmo Son, Jooyoung Sim, Min Hee Park, Young Eun Bang, Daekyung Sung, Jong-Min Lim, Won Il Choi","doi":"10.3390/antiox13101240","DOIUrl":null,"url":null,"abstract":"<p><p>Fullerene is a cosmic material with a buckyball-like structure comprising 60 carbon atoms. It has attracted significant interest because of its outstanding antioxidant, antiviral, and antibacterial properties. Natural fullerene (NC60) in shungite meets the demand of biomedical fields to scavenge reactive oxygen species in many diseases. However, its hydrophobicity and poor solubility in water hinder its use as an antioxidant. In this study, highly water-dispersed and stable Pluronic-coated natural fullerene nanoaggregates (NC60/Plu) were prepared from various Pluronic polymers. The water dispersity and stability of NC60 were compared and optimized based on the characteristics of Pluronic polymers including F68, F127, L35, P123, and L81. In particular, NC60 coated with Pluronic F127 at a weight ratio of 1 to 5 showed excellent antioxidant effects both in situ and in vitro. This suggests that the high solubilization of NC60 in Pluronic polymers increases its chance of interacting with reactive oxygen radicals and improves radical scavenging activity. Thus, the optimized NC60/PF127 may be a novel biocompatible antioxidant for treating various diseases associated with oxidative stress.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505577/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly Water-Dispersed Natural Fullerenes Coated with Pluronic Polymers as Novel Nanoantioxidants for Enhanced Antioxidant Activity.\",\"authors\":\"Hyeryeon Oh, Jin Sil Lee, Panmo Son, Jooyoung Sim, Min Hee Park, Young Eun Bang, Daekyung Sung, Jong-Min Lim, Won Il Choi\",\"doi\":\"10.3390/antiox13101240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fullerene is a cosmic material with a buckyball-like structure comprising 60 carbon atoms. It has attracted significant interest because of its outstanding antioxidant, antiviral, and antibacterial properties. Natural fullerene (NC60) in shungite meets the demand of biomedical fields to scavenge reactive oxygen species in many diseases. However, its hydrophobicity and poor solubility in water hinder its use as an antioxidant. In this study, highly water-dispersed and stable Pluronic-coated natural fullerene nanoaggregates (NC60/Plu) were prepared from various Pluronic polymers. The water dispersity and stability of NC60 were compared and optimized based on the characteristics of Pluronic polymers including F68, F127, L35, P123, and L81. In particular, NC60 coated with Pluronic F127 at a weight ratio of 1 to 5 showed excellent antioxidant effects both in situ and in vitro. This suggests that the high solubilization of NC60 in Pluronic polymers increases its chance of interacting with reactive oxygen radicals and improves radical scavenging activity. Thus, the optimized NC60/PF127 may be a novel biocompatible antioxidant for treating various diseases associated with oxidative stress.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13101240\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101240","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

富勒烯是一种由 60 个碳原子组成的具有类似扣球结构的宇宙材料。富勒烯因其卓越的抗氧化、抗病毒和抗菌特性而备受关注。霰石中的天然富勒烯(NC60)满足了生物医学领域清除多种疾病中活性氧的需求。然而,它的疏水性和在水中的低溶解度阻碍了它作为抗氧化剂的应用。本研究利用多种 Pluronic 聚合物制备了高水分散性和稳定性的 Pluronic 包覆天然富勒烯纳米团聚体(NC60/Plu)。根据 F68、F127、L35、P123 和 L81 等 Pluronic 聚合物的特性,对 NC60 的水分散性和稳定性进行了比较和优化。其中,以 1:5 的重量比涂覆了 Pluronic F127 的 NC60 在原位和体外都显示出了极佳的抗氧化效果。这表明,NC60 在 Pluronic 聚合物中的高溶解度增加了其与活性氧自由基相互作用的机会,提高了自由基清除活性。因此,优化后的 NC60/PF127 可能是一种新型的生物兼容抗氧化剂,可用于治疗与氧化应激有关的各种疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Water-Dispersed Natural Fullerenes Coated with Pluronic Polymers as Novel Nanoantioxidants for Enhanced Antioxidant Activity.

Fullerene is a cosmic material with a buckyball-like structure comprising 60 carbon atoms. It has attracted significant interest because of its outstanding antioxidant, antiviral, and antibacterial properties. Natural fullerene (NC60) in shungite meets the demand of biomedical fields to scavenge reactive oxygen species in many diseases. However, its hydrophobicity and poor solubility in water hinder its use as an antioxidant. In this study, highly water-dispersed and stable Pluronic-coated natural fullerene nanoaggregates (NC60/Plu) were prepared from various Pluronic polymers. The water dispersity and stability of NC60 were compared and optimized based on the characteristics of Pluronic polymers including F68, F127, L35, P123, and L81. In particular, NC60 coated with Pluronic F127 at a weight ratio of 1 to 5 showed excellent antioxidant effects both in situ and in vitro. This suggests that the high solubilization of NC60 in Pluronic polymers increases its chance of interacting with reactive oxygen radicals and improves radical scavenging activity. Thus, the optimized NC60/PF127 may be a novel biocompatible antioxidant for treating various diseases associated with oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信