从苹果酒工业的苹果渣中绿色提取生物活性化合物。

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rosa Pando Bedriñana, Roberto Rodríguez Madrera, María Dolores Loureiro Rodríguez, Karelmar López-Benítez, Anna Picinelli Lobo
{"title":"从苹果酒工业的苹果渣中绿色提取生物活性化合物。","authors":"Rosa Pando Bedriñana, Roberto Rodríguez Madrera, María Dolores Loureiro Rodríguez, Karelmar López-Benítez, Anna Picinelli Lobo","doi":"10.3390/antiox13101230","DOIUrl":null,"url":null,"abstract":"<p><p>The cider-making industry in Asturias generates between 9000 and 12,000 tons of apple pomace per year. This by-product, the remains of the apple pressing, and made up of peel, flesh, seeds and stems, is a valuable material, containing substantial amounts of antioxidant compounds associated with healthy properties. Polyphenols such as dihydrochalcones and quercetin glycosides, and triterpenic acids, among which ursolic acid is a major compound, are the main antioxidant families described in apple pomace. The simultaneous recovery of those families has been accomplished by low frequency ultrasound-assisted extraction. Working extraction conditions were optimised by response surface methodology (RSM): time, 5.1 min; extractant composition, 68% ethanol in water; solid/liquid ratio, 1/75 and ultrasonic wave amplitude, 90%. This procedure was further applied to analyse those components in the whole apple pomace (WAP), apple peel (AP) and apple flesh (AF). On average, dry WAP contained almost 1300 µg/g of flavonols, 1200 µg/g of dihydrochalcones and 4200 µg/g of ursolic acid. These figures increased in the apple peel to, respectively 2500, 1400 and 8500 µg/g dry matter. Two linear multivariate regression models allowed the antioxidant activity of apple by-products to be predicted on the basis of their bioactive composition. The results derived from this study confirm the potential of industrial cider apple pomace as a source of high-value bioactive compounds, and the feasibility of the ultrasound-assisted extraction technique to recover those components in a simple and efficient way.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505006/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry.\",\"authors\":\"Rosa Pando Bedriñana, Roberto Rodríguez Madrera, María Dolores Loureiro Rodríguez, Karelmar López-Benítez, Anna Picinelli Lobo\",\"doi\":\"10.3390/antiox13101230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cider-making industry in Asturias generates between 9000 and 12,000 tons of apple pomace per year. This by-product, the remains of the apple pressing, and made up of peel, flesh, seeds and stems, is a valuable material, containing substantial amounts of antioxidant compounds associated with healthy properties. Polyphenols such as dihydrochalcones and quercetin glycosides, and triterpenic acids, among which ursolic acid is a major compound, are the main antioxidant families described in apple pomace. The simultaneous recovery of those families has been accomplished by low frequency ultrasound-assisted extraction. Working extraction conditions were optimised by response surface methodology (RSM): time, 5.1 min; extractant composition, 68% ethanol in water; solid/liquid ratio, 1/75 and ultrasonic wave amplitude, 90%. This procedure was further applied to analyse those components in the whole apple pomace (WAP), apple peel (AP) and apple flesh (AF). On average, dry WAP contained almost 1300 µg/g of flavonols, 1200 µg/g of dihydrochalcones and 4200 µg/g of ursolic acid. These figures increased in the apple peel to, respectively 2500, 1400 and 8500 µg/g dry matter. Two linear multivariate regression models allowed the antioxidant activity of apple by-products to be predicted on the basis of their bioactive composition. The results derived from this study confirm the potential of industrial cider apple pomace as a source of high-value bioactive compounds, and the feasibility of the ultrasound-assisted extraction technique to recover those components in a simple and efficient way.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505006/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13101230\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101230","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿斯图里亚斯的苹果酒酿造业每年产生 9000 到 12000 吨苹果渣。这种副产品是苹果压榨后的残渣,由果皮、果肉、种子和茎组成,是一种宝贵的材料,含有大量有益健康的抗氧化化合物。多酚(如二氢查尔酮和槲皮素苷)和三萜酸(其中熊果酸是一种主要化合物)是苹果渣中的主要抗氧化剂。通过低频超声辅助萃取,可以同时回收这些系列的抗氧化剂。工作萃取条件通过响应面方法(RSM)进行了优化:时间为 5.1 分钟;萃取剂成分为 68% 的乙醇水溶液;固液比为 1/75;超声波振幅为 90%。该程序进一步用于分析整个苹果渣(WAP)、苹果皮(AP)和苹果肉(AF)中的成分。平均而言,干苹果渣中含有近 1300 微克/克的黄酮醇、1200 微克/克的二氢查耳酮和 4200 微克/克的熊果酸。这些数字在苹果皮中分别增加到 2500、1400 和 8500 微克/克干物质。通过两个线性多元回归模型,可以根据苹果副产品的生物活性成分预测其抗氧化活性。这项研究的结果证实了工业苹果渣作为高价值生物活性化合物来源的潜力,以及超声辅助萃取技术以简单高效的方式回收这些成分的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry.

The cider-making industry in Asturias generates between 9000 and 12,000 tons of apple pomace per year. This by-product, the remains of the apple pressing, and made up of peel, flesh, seeds and stems, is a valuable material, containing substantial amounts of antioxidant compounds associated with healthy properties. Polyphenols such as dihydrochalcones and quercetin glycosides, and triterpenic acids, among which ursolic acid is a major compound, are the main antioxidant families described in apple pomace. The simultaneous recovery of those families has been accomplished by low frequency ultrasound-assisted extraction. Working extraction conditions were optimised by response surface methodology (RSM): time, 5.1 min; extractant composition, 68% ethanol in water; solid/liquid ratio, 1/75 and ultrasonic wave amplitude, 90%. This procedure was further applied to analyse those components in the whole apple pomace (WAP), apple peel (AP) and apple flesh (AF). On average, dry WAP contained almost 1300 µg/g of flavonols, 1200 µg/g of dihydrochalcones and 4200 µg/g of ursolic acid. These figures increased in the apple peel to, respectively 2500, 1400 and 8500 µg/g dry matter. Two linear multivariate regression models allowed the antioxidant activity of apple by-products to be predicted on the basis of their bioactive composition. The results derived from this study confirm the potential of industrial cider apple pomace as a source of high-value bioactive compounds, and the feasibility of the ultrasound-assisted extraction technique to recover those components in a simple and efficient way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信