{"title":"量子图像分类","authors":"Zhihao Huang;Jinjing Shi;Xuelong Li","doi":"10.1109/TCYB.2024.3476339","DOIUrl":null,"url":null,"abstract":"Few-shot learning algorithms frequently exhibit suboptimal performance due to the limited availability of labeled data. This article presents a novel quantum few-shot image classification methodology aimed at enhancing the efficacy of few-shot learning algorithms at both the data and parameter levels. Initially, a quantum augmentation image representation technique is introduced, leveraging the local phase of quantum states to support few-shot learning algorithms at the data level. This approach enriches classical data while maintaining its intrinsic physical properties. Subsequently, a parameterized quantum circuit is employed to construct the classification model. This circuit, characterized by a reduced number of trainable parameters, shows increased resilience to overfitting, thereby offering a significant advantage at the parameter level for few-shot learning algorithms. The proposed approach is validated using three datasets, with experimental results indicating that it outperforms classical methods in few-shot learning scenarios while requiring fewer computational resources.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"194-206"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Few-Shot Image Classification\",\"authors\":\"Zhihao Huang;Jinjing Shi;Xuelong Li\",\"doi\":\"10.1109/TCYB.2024.3476339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot learning algorithms frequently exhibit suboptimal performance due to the limited availability of labeled data. This article presents a novel quantum few-shot image classification methodology aimed at enhancing the efficacy of few-shot learning algorithms at both the data and parameter levels. Initially, a quantum augmentation image representation technique is introduced, leveraging the local phase of quantum states to support few-shot learning algorithms at the data level. This approach enriches classical data while maintaining its intrinsic physical properties. Subsequently, a parameterized quantum circuit is employed to construct the classification model. This circuit, characterized by a reduced number of trainable parameters, shows increased resilience to overfitting, thereby offering a significant advantage at the parameter level for few-shot learning algorithms. The proposed approach is validated using three datasets, with experimental results indicating that it outperforms classical methods in few-shot learning scenarios while requiring fewer computational resources.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 1\",\"pages\":\"194-206\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735395/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10735395/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Few-shot learning algorithms frequently exhibit suboptimal performance due to the limited availability of labeled data. This article presents a novel quantum few-shot image classification methodology aimed at enhancing the efficacy of few-shot learning algorithms at both the data and parameter levels. Initially, a quantum augmentation image representation technique is introduced, leveraging the local phase of quantum states to support few-shot learning algorithms at the data level. This approach enriches classical data while maintaining its intrinsic physical properties. Subsequently, a parameterized quantum circuit is employed to construct the classification model. This circuit, characterized by a reduced number of trainable parameters, shows increased resilience to overfitting, thereby offering a significant advantage at the parameter level for few-shot learning algorithms. The proposed approach is validated using three datasets, with experimental results indicating that it outperforms classical methods in few-shot learning scenarios while requiring fewer computational resources.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.