{"title":"由细胞外囊泡介导的多药耐药性细胞间转移。","authors":"Anxiang Yang, Hui Sun, Xiaokun Wang","doi":"10.20517/cdr.2024.84","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistance (MDR) poses a formidable obstacle in cancer treatment, enabling cancer cells to evade the cytotoxic effects of chemotherapeutic drugs through various mechanisms. These mechanisms include intrinsic resistance, which is present prior to treatment, and acquired resistance, which develops after exposure to chemotherapy agents. Small membrane-bound vesicles, known as extracellular vesicles (EVs), are crucial in intercellular signaling as they transport bioactive molecules that can modify the characteristics and functions of recipient cells. Recent research highlights EVs as pivotal players in fostering drug resistance. This review focuses on the intercellular transfer of MDR from donor cells to susceptible recipient cells through specific cargo in EVs, such as ATP-binding cassette (ABC) transporter proteins, nucleic acids, and other regulatory factors. Additionally, the features of intercellular communication mediated by EVs are also discussed. Gaining insight into these mechanisms is essential for developing strategies to counteract resistance and improve the effectiveness of cancer treatments.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"36"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472569/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intercellular transfer of multidrug resistance mediated by extracellular vesicles.\",\"authors\":\"Anxiang Yang, Hui Sun, Xiaokun Wang\",\"doi\":\"10.20517/cdr.2024.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidrug resistance (MDR) poses a formidable obstacle in cancer treatment, enabling cancer cells to evade the cytotoxic effects of chemotherapeutic drugs through various mechanisms. These mechanisms include intrinsic resistance, which is present prior to treatment, and acquired resistance, which develops after exposure to chemotherapy agents. Small membrane-bound vesicles, known as extracellular vesicles (EVs), are crucial in intercellular signaling as they transport bioactive molecules that can modify the characteristics and functions of recipient cells. Recent research highlights EVs as pivotal players in fostering drug resistance. This review focuses on the intercellular transfer of MDR from donor cells to susceptible recipient cells through specific cargo in EVs, such as ATP-binding cassette (ABC) transporter proteins, nucleic acids, and other regulatory factors. Additionally, the features of intercellular communication mediated by EVs are also discussed. Gaining insight into these mechanisms is essential for developing strategies to counteract resistance and improve the effectiveness of cancer treatments.</p>\",\"PeriodicalId\":70759,\"journal\":{\"name\":\"癌症耐药(英文)\",\"volume\":\"7 \",\"pages\":\"36\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472569/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"癌症耐药(英文)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.20517/cdr.2024.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2024.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
多药耐药性(MDR)是癌症治疗中的一个巨大障碍,它使癌细胞能够通过各种机制逃避化疗药物的细胞毒性作用。这些机制包括治疗前就存在的内在耐药性和接触化疗药物后产生的获得性耐药性。被称为细胞外囊泡(EVs)的膜结合小囊泡在细胞间信号传递中至关重要,因为它们运输的生物活性分子可以改变受体细胞的特性和功能。最近的研究强调,EVs 是产生耐药性的关键因素。本综述重点探讨了 MDR 通过 EV 中的特定货物(如 ATP 结合盒 (ABC) 转运蛋白、核酸和其他调节因子)从供体细胞向易感受体细胞的细胞间转移。此外,还讨论了由 EVs 介导的细胞间通信的特点。深入了解这些机制对于开发抗药性策略和提高癌症治疗效果至关重要。
Intercellular transfer of multidrug resistance mediated by extracellular vesicles.
Multidrug resistance (MDR) poses a formidable obstacle in cancer treatment, enabling cancer cells to evade the cytotoxic effects of chemotherapeutic drugs through various mechanisms. These mechanisms include intrinsic resistance, which is present prior to treatment, and acquired resistance, which develops after exposure to chemotherapy agents. Small membrane-bound vesicles, known as extracellular vesicles (EVs), are crucial in intercellular signaling as they transport bioactive molecules that can modify the characteristics and functions of recipient cells. Recent research highlights EVs as pivotal players in fostering drug resistance. This review focuses on the intercellular transfer of MDR from donor cells to susceptible recipient cells through specific cargo in EVs, such as ATP-binding cassette (ABC) transporter proteins, nucleic acids, and other regulatory factors. Additionally, the features of intercellular communication mediated by EVs are also discussed. Gaining insight into these mechanisms is essential for developing strategies to counteract resistance and improve the effectiveness of cancer treatments.