Rahat Zarin, Nehal Shukla, Amir Khan, Jagdish Shukla, Usa Wannasingha Humphries
{"title":"丙型肝炎管理的动态策略和最优控制分析:无创肝纤维化诊断。","authors":"Rahat Zarin, Nehal Shukla, Amir Khan, Jagdish Shukla, Usa Wannasingha Humphries","doi":"10.1080/10255842.2024.2410976","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a novel model employing nonlinear ordinary differential equations to dissect HCV dynamics. Six distinct population groups are delineated: Susceptible, Treatment, Responder, Non-Responder, Cured, and Fibrosis. A detailed numerical analysis of this model was conducted, tracking the predicted trends over a span of 20 years. The primary objective of this analysis is to assess and confirm the model's predictive accuracy and its potential to supplant invasive diagnostic methods in monitoring the progression of liver fibrosis. By incorporating various control parameters, namely <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>1</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mrow><msub><mrow><mi>u</mi></mrow><mn>2</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></math> and <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>3</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></math> the model offers a nuanced perspective on disease progression and treatment outcomes. Parameter <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>1</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> modulates treatment-induced fibrosis progression, providing a crucial lever for mitigating treatment-related side effects. <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>2</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> reflects treatment effectiveness, capturing the proportion of responders within the treatment cohort. Meanwhile, <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>3</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> governs fibrosis progression in non-responders, shedding light on the disease's natural trajectory without effective treatment.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic strategies and optimal control analysis for hepatitis C management: non-invasive liver fibrosis diagnosis.\",\"authors\":\"Rahat Zarin, Nehal Shukla, Amir Khan, Jagdish Shukla, Usa Wannasingha Humphries\",\"doi\":\"10.1080/10255842.2024.2410976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes a novel model employing nonlinear ordinary differential equations to dissect HCV dynamics. Six distinct population groups are delineated: Susceptible, Treatment, Responder, Non-Responder, Cured, and Fibrosis. A detailed numerical analysis of this model was conducted, tracking the predicted trends over a span of 20 years. The primary objective of this analysis is to assess and confirm the model's predictive accuracy and its potential to supplant invasive diagnostic methods in monitoring the progression of liver fibrosis. By incorporating various control parameters, namely <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>1</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mrow><msub><mrow><mi>u</mi></mrow><mn>2</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></math> and <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>3</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></math> the model offers a nuanced perspective on disease progression and treatment outcomes. Parameter <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>1</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> modulates treatment-induced fibrosis progression, providing a crucial lever for mitigating treatment-related side effects. <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>2</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> reflects treatment effectiveness, capturing the proportion of responders within the treatment cohort. Meanwhile, <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>3</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> governs fibrosis progression in non-responders, shedding light on the disease's natural trajectory without effective treatment.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2410976\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2410976","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Dynamic strategies and optimal control analysis for hepatitis C management: non-invasive liver fibrosis diagnosis.
This study proposes a novel model employing nonlinear ordinary differential equations to dissect HCV dynamics. Six distinct population groups are delineated: Susceptible, Treatment, Responder, Non-Responder, Cured, and Fibrosis. A detailed numerical analysis of this model was conducted, tracking the predicted trends over a span of 20 years. The primary objective of this analysis is to assess and confirm the model's predictive accuracy and its potential to supplant invasive diagnostic methods in monitoring the progression of liver fibrosis. By incorporating various control parameters, namely and the model offers a nuanced perspective on disease progression and treatment outcomes. Parameter modulates treatment-induced fibrosis progression, providing a crucial lever for mitigating treatment-related side effects. reflects treatment effectiveness, capturing the proportion of responders within the treatment cohort. Meanwhile, governs fibrosis progression in non-responders, shedding light on the disease's natural trajectory without effective treatment.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.