Deepti N Chaudhari, Jayesh J Ahire, Anupama N Devkatte, Amit A Kulthe
{"title":"从传统土著发酵乳中分离的德尔布鲁贝克乳杆菌亚种(Lactobacillus delbrueckii subsp.","authors":"Deepti N Chaudhari, Jayesh J Ahire, Anupama N Devkatte, Amit A Kulthe","doi":"10.1007/s12602-024-10385-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, Lactobacillus delbrueckii subsp. indicus DC-3 was isolated from Indian traditional indigenous fermented milk Dahi and identified using whole genome sequencing. The safety of the strain was evaluated using genetic and phenotypic analyses, such as the presence of virulence factors, mobile and insertion elements, plasmids, antibiotic resistance, etc. Besides this, the strain was comprehensively investigated for in vitro probiotic traits, biofilm formation, antibacterials, and exopolysaccharide (EPS) production. In results, the strain showed a single circular chromosome (3,145,837 bp) with a GC content of 56.73%, a higher number of accessory and unique genes, an open pan-genome, and the absence of mobile and insertion elements, plasmids, virulence, and transmissible antibiotic resistance genes. The strain was capable of surviving in gastric juice (83% viability at 3 h) and intestinal juice (71% viability at 6 h) and showed 42.5% autoaggregation, adhesion to mucin, 8.7% adhesion to xylene, and 8.3% adhesion to Caco-2 cells. The γ-hemolytic nature, usual antibiotic susceptibility profile, and negative results for mucin and gelatin degradation ensure the safety of the strain. The strain produced 10.5 g/L of <sub>D</sub>-lactic acid and hydrogen peroxide, capable of inhibiting and co-aggregating Escherichia coli MTCC 1687, Proteus mirabilis MTCC 425, and Candida albicans ATCC 14,053. In addition, the strain showed 90 mg/L EPS (48 h) and biofilm formation. In conclusion, this study demonstrates that L. delbrueckii subsp. indicus DC-3 is unique and different than previously reported L. delbrueckii subsp. indicus strains and is a safe potential probiotic candidate.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete Genome Sequence and Probiotic Characterization of Lactobacillus delbrueckii subsp. Indicus DC-3 Isolated from Traditional Indigenous Fermented Milk.\",\"authors\":\"Deepti N Chaudhari, Jayesh J Ahire, Anupama N Devkatte, Amit A Kulthe\",\"doi\":\"10.1007/s12602-024-10385-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, Lactobacillus delbrueckii subsp. indicus DC-3 was isolated from Indian traditional indigenous fermented milk Dahi and identified using whole genome sequencing. The safety of the strain was evaluated using genetic and phenotypic analyses, such as the presence of virulence factors, mobile and insertion elements, plasmids, antibiotic resistance, etc. Besides this, the strain was comprehensively investigated for in vitro probiotic traits, biofilm formation, antibacterials, and exopolysaccharide (EPS) production. In results, the strain showed a single circular chromosome (3,145,837 bp) with a GC content of 56.73%, a higher number of accessory and unique genes, an open pan-genome, and the absence of mobile and insertion elements, plasmids, virulence, and transmissible antibiotic resistance genes. The strain was capable of surviving in gastric juice (83% viability at 3 h) and intestinal juice (71% viability at 6 h) and showed 42.5% autoaggregation, adhesion to mucin, 8.7% adhesion to xylene, and 8.3% adhesion to Caco-2 cells. The γ-hemolytic nature, usual antibiotic susceptibility profile, and negative results for mucin and gelatin degradation ensure the safety of the strain. The strain produced 10.5 g/L of <sub>D</sub>-lactic acid and hydrogen peroxide, capable of inhibiting and co-aggregating Escherichia coli MTCC 1687, Proteus mirabilis MTCC 425, and Candida albicans ATCC 14,053. In addition, the strain showed 90 mg/L EPS (48 h) and biofilm formation. In conclusion, this study demonstrates that L. delbrueckii subsp. indicus DC-3 is unique and different than previously reported L. delbrueckii subsp. indicus strains and is a safe potential probiotic candidate.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10385-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10385-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Complete Genome Sequence and Probiotic Characterization of Lactobacillus delbrueckii subsp. Indicus DC-3 Isolated from Traditional Indigenous Fermented Milk.
In this study, Lactobacillus delbrueckii subsp. indicus DC-3 was isolated from Indian traditional indigenous fermented milk Dahi and identified using whole genome sequencing. The safety of the strain was evaluated using genetic and phenotypic analyses, such as the presence of virulence factors, mobile and insertion elements, plasmids, antibiotic resistance, etc. Besides this, the strain was comprehensively investigated for in vitro probiotic traits, biofilm formation, antibacterials, and exopolysaccharide (EPS) production. In results, the strain showed a single circular chromosome (3,145,837 bp) with a GC content of 56.73%, a higher number of accessory and unique genes, an open pan-genome, and the absence of mobile and insertion elements, plasmids, virulence, and transmissible antibiotic resistance genes. The strain was capable of surviving in gastric juice (83% viability at 3 h) and intestinal juice (71% viability at 6 h) and showed 42.5% autoaggregation, adhesion to mucin, 8.7% adhesion to xylene, and 8.3% adhesion to Caco-2 cells. The γ-hemolytic nature, usual antibiotic susceptibility profile, and negative results for mucin and gelatin degradation ensure the safety of the strain. The strain produced 10.5 g/L of D-lactic acid and hydrogen peroxide, capable of inhibiting and co-aggregating Escherichia coli MTCC 1687, Proteus mirabilis MTCC 425, and Candida albicans ATCC 14,053. In addition, the strain showed 90 mg/L EPS (48 h) and biofilm formation. In conclusion, this study demonstrates that L. delbrueckii subsp. indicus DC-3 is unique and different than previously reported L. delbrueckii subsp. indicus strains and is a safe potential probiotic candidate.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.