Tao Tang, Chi Ren, Yi Cai, Yan Li, Kai Wang, Mingwei Zhao
{"title":"C57BL/6J 小鼠脉络膜厚度、屈光状态和眼部尺寸的终生变化","authors":"Tao Tang, Chi Ren, Yi Cai, Yan Li, Kai Wang, Mingwei Zhao","doi":"10.1167/iovs.65.12.26","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the changes in choroidal thickness (ChT), refractive status, and ocular dimensions in the mouse eye in vivo using updated techniques and instrumentation.</p><p><strong>Methods: </strong>High-resolution swept-source optical coherence tomography (SS-OCT), eccentric infrared photoretinoscopy, and custom real-time optical coherence tomography were used to analyze choroidal changes, refractive changes and ocular growth in C57BL/6J mice from postnatal day (P) 21 to month 22.</p><p><strong>Results: </strong>The ChT gradually increased with age, with the thickest region in the para-optic nerve head and thinning outward, and the temporal ChT was globally thicker than the nasal ChT. Retinal thickness remained stable until 4 months and subsequently decreased. The average spherical equivalent refraction error was -4.81 ± 2.71 diopters (D) at P21, which developed into emmetropia by P32, reached a hyperopic peak (+5.75 ± 1.38 D) at P82 and returned to +0.66 ± 1.86 D at 22 months. Central corneal thickness, anterior chamber depth, lens thickness, and axial length (AL) increased continuously before 4 months, but subsequently exhibited subtle changes. Vitreous chamber depth decreased with lens growth. ChT was correlated significantly with the ocular parameters (except for retinal thickness) before the age of 4 months, but these correlations diminished after 4 months. Furthermore, for mice younger than 4 months, the difference in the ChT, especially temporal ChT, between the two eyes contributed most to that of axial length and spherical equivalent refraction error.</p><p><strong>Conclusions: </strong>Four months could be a watershed age in the growth of mouse eyes. Large-span temporal recordings of refraction, ocular dimensions, and choroidal changes provided references for the study of the physiological and pathological mechanisms responsible for myopia.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"65 12","pages":"26"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500047/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lifelong Changes in the Choroidal Thickness, Refractive Status, and Ocular Dimensions in C57BL/6J Mouse.\",\"authors\":\"Tao Tang, Chi Ren, Yi Cai, Yan Li, Kai Wang, Mingwei Zhao\",\"doi\":\"10.1167/iovs.65.12.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To investigate the changes in choroidal thickness (ChT), refractive status, and ocular dimensions in the mouse eye in vivo using updated techniques and instrumentation.</p><p><strong>Methods: </strong>High-resolution swept-source optical coherence tomography (SS-OCT), eccentric infrared photoretinoscopy, and custom real-time optical coherence tomography were used to analyze choroidal changes, refractive changes and ocular growth in C57BL/6J mice from postnatal day (P) 21 to month 22.</p><p><strong>Results: </strong>The ChT gradually increased with age, with the thickest region in the para-optic nerve head and thinning outward, and the temporal ChT was globally thicker than the nasal ChT. Retinal thickness remained stable until 4 months and subsequently decreased. The average spherical equivalent refraction error was -4.81 ± 2.71 diopters (D) at P21, which developed into emmetropia by P32, reached a hyperopic peak (+5.75 ± 1.38 D) at P82 and returned to +0.66 ± 1.86 D at 22 months. Central corneal thickness, anterior chamber depth, lens thickness, and axial length (AL) increased continuously before 4 months, but subsequently exhibited subtle changes. Vitreous chamber depth decreased with lens growth. ChT was correlated significantly with the ocular parameters (except for retinal thickness) before the age of 4 months, but these correlations diminished after 4 months. Furthermore, for mice younger than 4 months, the difference in the ChT, especially temporal ChT, between the two eyes contributed most to that of axial length and spherical equivalent refraction error.</p><p><strong>Conclusions: </strong>Four months could be a watershed age in the growth of mouse eyes. Large-span temporal recordings of refraction, ocular dimensions, and choroidal changes provided references for the study of the physiological and pathological mechanisms responsible for myopia.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":\"65 12\",\"pages\":\"26\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500047/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.65.12.26\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.65.12.26","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Lifelong Changes in the Choroidal Thickness, Refractive Status, and Ocular Dimensions in C57BL/6J Mouse.
Purpose: To investigate the changes in choroidal thickness (ChT), refractive status, and ocular dimensions in the mouse eye in vivo using updated techniques and instrumentation.
Methods: High-resolution swept-source optical coherence tomography (SS-OCT), eccentric infrared photoretinoscopy, and custom real-time optical coherence tomography were used to analyze choroidal changes, refractive changes and ocular growth in C57BL/6J mice from postnatal day (P) 21 to month 22.
Results: The ChT gradually increased with age, with the thickest region in the para-optic nerve head and thinning outward, and the temporal ChT was globally thicker than the nasal ChT. Retinal thickness remained stable until 4 months and subsequently decreased. The average spherical equivalent refraction error was -4.81 ± 2.71 diopters (D) at P21, which developed into emmetropia by P32, reached a hyperopic peak (+5.75 ± 1.38 D) at P82 and returned to +0.66 ± 1.86 D at 22 months. Central corneal thickness, anterior chamber depth, lens thickness, and axial length (AL) increased continuously before 4 months, but subsequently exhibited subtle changes. Vitreous chamber depth decreased with lens growth. ChT was correlated significantly with the ocular parameters (except for retinal thickness) before the age of 4 months, but these correlations diminished after 4 months. Furthermore, for mice younger than 4 months, the difference in the ChT, especially temporal ChT, between the two eyes contributed most to that of axial length and spherical equivalent refraction error.
Conclusions: Four months could be a watershed age in the growth of mouse eyes. Large-span temporal recordings of refraction, ocular dimensions, and choroidal changes provided references for the study of the physiological and pathological mechanisms responsible for myopia.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.