Zelin Wang, Kaifang Liu, Yuan Du, Danhong Chen, Ting Li, Yuan Chi, Song Zhang, Rongxiao Che, Dong Liu
{"title":"生物土壤板结显著提高了青藏高原草地的土壤肥力,并改变了土壤微生物群。","authors":"Zelin Wang, Kaifang Liu, Yuan Du, Danhong Chen, Ting Li, Yuan Chi, Song Zhang, Rongxiao Che, Dong Liu","doi":"10.1093/femsle/fnae088","DOIUrl":null,"url":null,"abstract":"<p><p>Biological soil crusts (BSCs), a vital component of ecosystems, are pivotal in carbon sequestration, nutrient enrichment, and microbial diversity conservation. However, their impact on soil microbiomes in alpine regions remains largely unexplored. Therefore, this study aimed to determine the influence of BSCs on alpine grassland soil microbiomes, by collecting 24 pairs of soils covered by biological and physical crusts along a transect on the Qinghai-Tibetan Plateau. We found that BSCs significantly increased the contents of soil moisture, organic carbon, total nitrogen, and many available nutrients. They also substantially altered the soil microbiomes. Specifically, BSCs significantly increased the relative abundance of Cyanobacteria, Verrucomicrobiota, and Ascomycota, while decreasing the proportions of Gemmatimonadota, Firmicutes, Nitrospirae, Mortierellomycota, and Glomeromycota. By contrast, microbial abundance and α-diversity demonstrated low sensitivity to BSCs across most study sites. Under the BSCs, the assembly of prokaryotic communities was more affected by homogeneous selection and drift, but less affected by dispersal limitation. Conversely, soil fungal community assembly mechanisms showed an inverse trend. Overall, this study provides a comprehensive understanding of the effects of BSCs on soil properties and microbial communities, offering vital insights into the ecological roles of BSCs.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological soil crusts significantly improve soil fertility and change soil microbiomes in Qinghai-Tibetan alpine grasslands.\",\"authors\":\"Zelin Wang, Kaifang Liu, Yuan Du, Danhong Chen, Ting Li, Yuan Chi, Song Zhang, Rongxiao Che, Dong Liu\",\"doi\":\"10.1093/femsle/fnae088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological soil crusts (BSCs), a vital component of ecosystems, are pivotal in carbon sequestration, nutrient enrichment, and microbial diversity conservation. However, their impact on soil microbiomes in alpine regions remains largely unexplored. Therefore, this study aimed to determine the influence of BSCs on alpine grassland soil microbiomes, by collecting 24 pairs of soils covered by biological and physical crusts along a transect on the Qinghai-Tibetan Plateau. We found that BSCs significantly increased the contents of soil moisture, organic carbon, total nitrogen, and many available nutrients. They also substantially altered the soil microbiomes. Specifically, BSCs significantly increased the relative abundance of Cyanobacteria, Verrucomicrobiota, and Ascomycota, while decreasing the proportions of Gemmatimonadota, Firmicutes, Nitrospirae, Mortierellomycota, and Glomeromycota. By contrast, microbial abundance and α-diversity demonstrated low sensitivity to BSCs across most study sites. Under the BSCs, the assembly of prokaryotic communities was more affected by homogeneous selection and drift, but less affected by dispersal limitation. Conversely, soil fungal community assembly mechanisms showed an inverse trend. Overall, this study provides a comprehensive understanding of the effects of BSCs on soil properties and microbial communities, offering vital insights into the ecological roles of BSCs.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae088\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae088","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Biological soil crusts significantly improve soil fertility and change soil microbiomes in Qinghai-Tibetan alpine grasslands.
Biological soil crusts (BSCs), a vital component of ecosystems, are pivotal in carbon sequestration, nutrient enrichment, and microbial diversity conservation. However, their impact on soil microbiomes in alpine regions remains largely unexplored. Therefore, this study aimed to determine the influence of BSCs on alpine grassland soil microbiomes, by collecting 24 pairs of soils covered by biological and physical crusts along a transect on the Qinghai-Tibetan Plateau. We found that BSCs significantly increased the contents of soil moisture, organic carbon, total nitrogen, and many available nutrients. They also substantially altered the soil microbiomes. Specifically, BSCs significantly increased the relative abundance of Cyanobacteria, Verrucomicrobiota, and Ascomycota, while decreasing the proportions of Gemmatimonadota, Firmicutes, Nitrospirae, Mortierellomycota, and Glomeromycota. By contrast, microbial abundance and α-diversity demonstrated low sensitivity to BSCs across most study sites. Under the BSCs, the assembly of prokaryotic communities was more affected by homogeneous selection and drift, but less affected by dispersal limitation. Conversely, soil fungal community assembly mechanisms showed an inverse trend. Overall, this study provides a comprehensive understanding of the effects of BSCs on soil properties and microbial communities, offering vital insights into the ecological roles of BSCs.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.