Derek A Leas, Jennifer Keiser, Susan A Charman, David M Shackleford, Jeremy O Jones, Michael Campbell, Gong Chen, Kasiram Katneni, Rahul Patil, Meiyu Hu, Thao Pham, Cécile Häberli, Thomas T Schulze, Andrew J Neville, Xiaofang Wang, Yuxiang Dong, Paul H Davis, Jonathan L Vennerstrom
{"title":"血吸虫病单剂量候选药物开发。","authors":"Derek A Leas, Jennifer Keiser, Susan A Charman, David M Shackleford, Jeremy O Jones, Michael Campbell, Gong Chen, Kasiram Katneni, Rahul Patil, Meiyu Hu, Thao Pham, Cécile Häberli, Thomas T Schulze, Andrew J Neville, Xiaofang Wang, Yuxiang Dong, Paul H Davis, Jonathan L Vennerstrom","doi":"10.1021/acsinfecdis.4c00677","DOIUrl":null,"url":null,"abstract":"<p><p>Aryl hydantoins were identified in the early 1980s as a promising antischistosomal chemotype. However, as exemplified by Ro 13-3978, this compound series produced antiandrogenic side effects on the host, a not unexpected outcome given their structural similarity to the antiandrogenic drug nilutamide. The two key advances in our optimization of Ro 13-3978 were swapping the aryl trifluoromethyl substituent with a difluoroethyl to abolish antiandrogenic effects and replacing the hydrogen atoms of the <i>gem</i>-dimethyl substructure with deuterium atoms to increase metabolic stability. Combining these two structural changes led to the discovery of single-dose drug candidate AR102, a compound with potent, selective, and broad-spectrum activity against schistosomes, a long pharmacokinetic half-life in preclinical species, and an acceptable safety profile.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"3963-3972"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Dose Drug Development Candidate for Schistosomiasis.\",\"authors\":\"Derek A Leas, Jennifer Keiser, Susan A Charman, David M Shackleford, Jeremy O Jones, Michael Campbell, Gong Chen, Kasiram Katneni, Rahul Patil, Meiyu Hu, Thao Pham, Cécile Häberli, Thomas T Schulze, Andrew J Neville, Xiaofang Wang, Yuxiang Dong, Paul H Davis, Jonathan L Vennerstrom\",\"doi\":\"10.1021/acsinfecdis.4c00677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aryl hydantoins were identified in the early 1980s as a promising antischistosomal chemotype. However, as exemplified by Ro 13-3978, this compound series produced antiandrogenic side effects on the host, a not unexpected outcome given their structural similarity to the antiandrogenic drug nilutamide. The two key advances in our optimization of Ro 13-3978 were swapping the aryl trifluoromethyl substituent with a difluoroethyl to abolish antiandrogenic effects and replacing the hydrogen atoms of the <i>gem</i>-dimethyl substructure with deuterium atoms to increase metabolic stability. Combining these two structural changes led to the discovery of single-dose drug candidate AR102, a compound with potent, selective, and broad-spectrum activity against schistosomes, a long pharmacokinetic half-life in preclinical species, and an acceptable safety profile.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"3963-3972\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00677\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00677","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Single-Dose Drug Development Candidate for Schistosomiasis.
Aryl hydantoins were identified in the early 1980s as a promising antischistosomal chemotype. However, as exemplified by Ro 13-3978, this compound series produced antiandrogenic side effects on the host, a not unexpected outcome given their structural similarity to the antiandrogenic drug nilutamide. The two key advances in our optimization of Ro 13-3978 were swapping the aryl trifluoromethyl substituent with a difluoroethyl to abolish antiandrogenic effects and replacing the hydrogen atoms of the gem-dimethyl substructure with deuterium atoms to increase metabolic stability. Combining these two structural changes led to the discovery of single-dose drug candidate AR102, a compound with potent, selective, and broad-spectrum activity against schistosomes, a long pharmacokinetic half-life in preclinical species, and an acceptable safety profile.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.