Cynthia M Co, Aditi Mulgaonkar, Ning Zhou, Tam P Nguyen, Shelby Harris, Amber Sherwood, Vicki Ea, Katie Rubitschung, Laila Castellino, Orhan K Öz, Xiankai Sun, Liping Tang
{"title":"d-[5-11C]-谷氨酰胺正电子发射断层扫描成像用于骨科植入物感染的诊断和治疗监测。","authors":"Cynthia M Co, Aditi Mulgaonkar, Ning Zhou, Tam P Nguyen, Shelby Harris, Amber Sherwood, Vicki Ea, Katie Rubitschung, Laila Castellino, Orhan K Öz, Xiankai Sun, Liping Tang","doi":"10.1021/acsinfecdis.4c00487","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopedic implant infections (OIIs) present diagnostic and therapeutic challenges, owing to the lack of methods to distinguish between active infection and sterile inflammation. To address this unmet need, d-amino-acid-based radiotracers with unique metabolic profiles in microorganisms have emerged as a novel class of infection-specific imaging agents. Given the pivotal role of d-glutamine in bacterial biofilm formation and virulence, herein, we explored the potential of positron emission tomography (PET) imaging with d-[5-<sup>11</sup>C]-Glutamine (d-[5-<sup>11</sup>C]-Gln) for early detection and treatment monitoring of OIIs. <i>In vitro</i> studies confirmed an active uptake of d-[5-<sup>11</sup>C]-Gln by <i>Staphylococcus aureus</i> (<i>S. aureus</i>) biofilm commonly associated with OIIs. <i>In vivo</i> evaluations included PET imaging comparisons with d-[5-<sup>11</sup>C]-Gln <i>vs</i> l-[5-<sup>11</sup>C]-Gln or 2-deoxy-2-[<sup>18</sup>F]-fluoroglucose ([<sup>18</sup>F]-FDG) in a rat OII model with tibial implantation of sterile or <i>S. aureus</i><i>-</i>colonized stainless-steel screws before and after treatment. These studies demonstrated that the uptake of d-[5-<sup>11</sup>C]-Gln was significantly higher in the infected screws than that in sterile screws (∼3.4-fold, <i>p</i> = 0.008), which displayed significantly higher infection-to-background muscle uptake ratios (∼2-fold, <i>p</i> = 0.011) with d-[5-<sup>11</sup>C]-Gln as compared to l-[5-<sup>11</sup>C]-Gln. Following a 3 week vancomycin treatment, imaging with d-[5-<sup>11</sup>C]-Gln showed a significant reduction in uptake at the infected sites (∼3-fold, <i>p</i> = 0.0008). Further regression analyses revealed a superior correlation of residual infection-associated radiotracer uptake with the postimaging <i>ex vivo</i> bacterial counts for d-[5-<sup>11</sup>C]-Gln (<i>k</i> = 0.473, <i>R</i><sup>2</sup> = 0.796) <i>vs</i> [<sup>18</sup>F]-FDG (<i>k</i> = 0.212, <i>R</i><sup>2</sup> = 0.434), suggesting that d-[5-<sup>11</sup>C]-Gln PET had higher sensitivity for detecting residual bacterial burden than [<sup>18</sup>F]-FDG PET. Our results demonstrate the translational potential of d-[5-<sup>11</sup>C]-Gln PET imaging for noninvasive detection and treatment monitoring of OIIs.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"144-154"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"d-[5-<sup>11</sup>C]-Glutamine Positron Emission Tomography Imaging for Diagnosis and Therapeutic Monitoring of Orthopedic Implant Infections.\",\"authors\":\"Cynthia M Co, Aditi Mulgaonkar, Ning Zhou, Tam P Nguyen, Shelby Harris, Amber Sherwood, Vicki Ea, Katie Rubitschung, Laila Castellino, Orhan K Öz, Xiankai Sun, Liping Tang\",\"doi\":\"10.1021/acsinfecdis.4c00487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orthopedic implant infections (OIIs) present diagnostic and therapeutic challenges, owing to the lack of methods to distinguish between active infection and sterile inflammation. To address this unmet need, d-amino-acid-based radiotracers with unique metabolic profiles in microorganisms have emerged as a novel class of infection-specific imaging agents. Given the pivotal role of d-glutamine in bacterial biofilm formation and virulence, herein, we explored the potential of positron emission tomography (PET) imaging with d-[5-<sup>11</sup>C]-Glutamine (d-[5-<sup>11</sup>C]-Gln) for early detection and treatment monitoring of OIIs. <i>In vitro</i> studies confirmed an active uptake of d-[5-<sup>11</sup>C]-Gln by <i>Staphylococcus aureus</i> (<i>S. aureus</i>) biofilm commonly associated with OIIs. <i>In vivo</i> evaluations included PET imaging comparisons with d-[5-<sup>11</sup>C]-Gln <i>vs</i> l-[5-<sup>11</sup>C]-Gln or 2-deoxy-2-[<sup>18</sup>F]-fluoroglucose ([<sup>18</sup>F]-FDG) in a rat OII model with tibial implantation of sterile or <i>S. aureus</i><i>-</i>colonized stainless-steel screws before and after treatment. These studies demonstrated that the uptake of d-[5-<sup>11</sup>C]-Gln was significantly higher in the infected screws than that in sterile screws (∼3.4-fold, <i>p</i> = 0.008), which displayed significantly higher infection-to-background muscle uptake ratios (∼2-fold, <i>p</i> = 0.011) with d-[5-<sup>11</sup>C]-Gln as compared to l-[5-<sup>11</sup>C]-Gln. Following a 3 week vancomycin treatment, imaging with d-[5-<sup>11</sup>C]-Gln showed a significant reduction in uptake at the infected sites (∼3-fold, <i>p</i> = 0.0008). Further regression analyses revealed a superior correlation of residual infection-associated radiotracer uptake with the postimaging <i>ex vivo</i> bacterial counts for d-[5-<sup>11</sup>C]-Gln (<i>k</i> = 0.473, <i>R</i><sup>2</sup> = 0.796) <i>vs</i> [<sup>18</sup>F]-FDG (<i>k</i> = 0.212, <i>R</i><sup>2</sup> = 0.434), suggesting that d-[5-<sup>11</sup>C]-Gln PET had higher sensitivity for detecting residual bacterial burden than [<sup>18</sup>F]-FDG PET. Our results demonstrate the translational potential of d-[5-<sup>11</sup>C]-Gln PET imaging for noninvasive detection and treatment monitoring of OIIs.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"144-154\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00487\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00487","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
d-[5-11C]-Glutamine Positron Emission Tomography Imaging for Diagnosis and Therapeutic Monitoring of Orthopedic Implant Infections.
Orthopedic implant infections (OIIs) present diagnostic and therapeutic challenges, owing to the lack of methods to distinguish between active infection and sterile inflammation. To address this unmet need, d-amino-acid-based radiotracers with unique metabolic profiles in microorganisms have emerged as a novel class of infection-specific imaging agents. Given the pivotal role of d-glutamine in bacterial biofilm formation and virulence, herein, we explored the potential of positron emission tomography (PET) imaging with d-[5-11C]-Glutamine (d-[5-11C]-Gln) for early detection and treatment monitoring of OIIs. In vitro studies confirmed an active uptake of d-[5-11C]-Gln by Staphylococcus aureus (S. aureus) biofilm commonly associated with OIIs. In vivo evaluations included PET imaging comparisons with d-[5-11C]-Gln vs l-[5-11C]-Gln or 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) in a rat OII model with tibial implantation of sterile or S. aureus-colonized stainless-steel screws before and after treatment. These studies demonstrated that the uptake of d-[5-11C]-Gln was significantly higher in the infected screws than that in sterile screws (∼3.4-fold, p = 0.008), which displayed significantly higher infection-to-background muscle uptake ratios (∼2-fold, p = 0.011) with d-[5-11C]-Gln as compared to l-[5-11C]-Gln. Following a 3 week vancomycin treatment, imaging with d-[5-11C]-Gln showed a significant reduction in uptake at the infected sites (∼3-fold, p = 0.0008). Further regression analyses revealed a superior correlation of residual infection-associated radiotracer uptake with the postimaging ex vivo bacterial counts for d-[5-11C]-Gln (k = 0.473, R2 = 0.796) vs [18F]-FDG (k = 0.212, R2 = 0.434), suggesting that d-[5-11C]-Gln PET had higher sensitivity for detecting residual bacterial burden than [18F]-FDG PET. Our results demonstrate the translational potential of d-[5-11C]-Gln PET imaging for noninvasive detection and treatment monitoring of OIIs.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.