Georg Braun, Gunda Herberth, Martin Krauss, Maria König, Niklas Wojtysiak, Ana C. Zenclussen, Beate I. Escher
{"title":"从孕妇血液中提取的化学物质的神经毒性混合物效应","authors":"Georg Braun, Gunda Herberth, Martin Krauss, Maria König, Niklas Wojtysiak, Ana C. Zenclussen, Beate I. Escher","doi":"10.1126/science.adq0336","DOIUrl":null,"url":null,"abstract":"<div >Human biomonitoring studies typically capture only a small and unknown fraction of the entire chemical universe. We combined chemical analysis with a high-throughput in vitro assay for neurotoxicity to capture complex mixtures of organic chemicals in blood. Plasma samples of 624 pregnant women from the German LiNA cohort were extracted with a nonselective extraction method for organic chemicals. 294 of >1000 target analytes were detected and quantified. Many of the detected chemicals as well as the whole extracts interfered with neurite development. Experimental testing of simulated complex mixtures of detected chemicals in the neurotoxicity assay confirmed additive mixture effects at concentrations less than individual chemicals’ effect thresholds. The use of high-throughput target screening combined with bioassays has the potential to improve human biomonitoring and provide a new approach to including mixture effects in epidemiological studies.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"386 6719","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/science.adq0336","citationCount":"0","resultStr":"{\"title\":\"Neurotoxic mixture effects of chemicals extracted from blood of pregnant women\",\"authors\":\"Georg Braun, Gunda Herberth, Martin Krauss, Maria König, Niklas Wojtysiak, Ana C. Zenclussen, Beate I. Escher\",\"doi\":\"10.1126/science.adq0336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Human biomonitoring studies typically capture only a small and unknown fraction of the entire chemical universe. We combined chemical analysis with a high-throughput in vitro assay for neurotoxicity to capture complex mixtures of organic chemicals in blood. Plasma samples of 624 pregnant women from the German LiNA cohort were extracted with a nonselective extraction method for organic chemicals. 294 of >1000 target analytes were detected and quantified. Many of the detected chemicals as well as the whole extracts interfered with neurite development. Experimental testing of simulated complex mixtures of detected chemicals in the neurotoxicity assay confirmed additive mixture effects at concentrations less than individual chemicals’ effect thresholds. The use of high-throughput target screening combined with bioassays has the potential to improve human biomonitoring and provide a new approach to including mixture effects in epidemiological studies.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"386 6719\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/science.adq0336\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adq0336\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adq0336","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Neurotoxic mixture effects of chemicals extracted from blood of pregnant women
Human biomonitoring studies typically capture only a small and unknown fraction of the entire chemical universe. We combined chemical analysis with a high-throughput in vitro assay for neurotoxicity to capture complex mixtures of organic chemicals in blood. Plasma samples of 624 pregnant women from the German LiNA cohort were extracted with a nonselective extraction method for organic chemicals. 294 of >1000 target analytes were detected and quantified. Many of the detected chemicals as well as the whole extracts interfered with neurite development. Experimental testing of simulated complex mixtures of detected chemicals in the neurotoxicity assay confirmed additive mixture effects at concentrations less than individual chemicals’ effect thresholds. The use of high-throughput target screening combined with bioassays has the potential to improve human biomonitoring and provide a new approach to including mixture effects in epidemiological studies.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.