提高 SubPc/Ti3C2Tx 光催化制氢活性的高效有机-无机异质结结构†

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoying Yu, Tianfang Zheng, Yuanlin Li, Yanxiang Liu, Ping Guo, Hai-Hua Wang, Shin-ichi Sasaki and Xiao-Feng Wang
{"title":"提高 SubPc/Ti3C2Tx 光催化制氢活性的高效有机-无机异质结结构†","authors":"Xiaoying Yu, Tianfang Zheng, Yuanlin Li, Yanxiang Liu, Ping Guo, Hai-Hua Wang, Shin-ichi Sasaki and Xiao-Feng Wang","doi":"10.1039/D4TC02937B","DOIUrl":null,"url":null,"abstract":"<p >The production of hydrogen fuel by solar-driven photocatalytic water splitting is an attractive solution to overcome the environmental and energy problems with traditional fossil fuels. The strategies to improve the capacity of photocatalytic hydrogen production include enhancing the light absorption of materials and using co-catalysts to reduce the efficiency of electron–hole recombination. Here, we report a Schottky heterojunction photocatalyst composed of subphthalocyanine (SubPc) and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene, which can effectively separate photogenerated charges. The outstanding ability of SubPc to absorb visible light and the ability of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene to capture photogenerated electrons were applied to improve the photocatalytic hydrogen-production performance of the SubPc/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> composite. Two types of SubPcs (SubPc-Cl and SubPc-OPh) were hybridized with Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene nanosheets. The hydrogen evolution of SubPc/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> with different mass ratios was experimentally investigated, and it was found that the optimized SubPc-Cl/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> exhibited the best H<small><sub>2</sub></small>-production rate of 105 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>. Our findings provide a new design approach and promising strategy to develop low-cost photocatalysts for future solar-driven sustainable energy-conversion systems.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 40","pages":" 16405-16414"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient organic–inorganic heterojunction structure for enhancing the photocatalytic activity of SubPc/Ti3C2Tx towards hydrogen production†\",\"authors\":\"Xiaoying Yu, Tianfang Zheng, Yuanlin Li, Yanxiang Liu, Ping Guo, Hai-Hua Wang, Shin-ichi Sasaki and Xiao-Feng Wang\",\"doi\":\"10.1039/D4TC02937B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The production of hydrogen fuel by solar-driven photocatalytic water splitting is an attractive solution to overcome the environmental and energy problems with traditional fossil fuels. The strategies to improve the capacity of photocatalytic hydrogen production include enhancing the light absorption of materials and using co-catalysts to reduce the efficiency of electron–hole recombination. Here, we report a Schottky heterojunction photocatalyst composed of subphthalocyanine (SubPc) and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene, which can effectively separate photogenerated charges. The outstanding ability of SubPc to absorb visible light and the ability of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene to capture photogenerated electrons were applied to improve the photocatalytic hydrogen-production performance of the SubPc/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> composite. Two types of SubPcs (SubPc-Cl and SubPc-OPh) were hybridized with Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene nanosheets. The hydrogen evolution of SubPc/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> with different mass ratios was experimentally investigated, and it was found that the optimized SubPc-Cl/Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> exhibited the best H<small><sub>2</sub></small>-production rate of 105 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>. Our findings provide a new design approach and promising strategy to develop low-cost photocatalysts for future solar-driven sustainable energy-conversion systems.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 40\",\"pages\":\" 16405-16414\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02937b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02937b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过太阳能驱动的光催化水分裂生产氢燃料,是克服传统化石燃料所带来的环境和能源问题的一个极具吸引力的解决方案。提高光催化制氢能力的策略包括增强材料的光吸收能力和使用助催化剂降低电子-空穴重组效率。在此,我们报告了一种由亚酞菁(SubPc)和 Ti3C2Tx MXene 组成的肖特基异质结光催化剂,它能有效分离光生电荷。SubPc 吸收可见光的出色能力和 Ti3C2Tx MXene 捕获光生电子的能力被用于提高 SubPc/Ti3C2Tx 复合材料的光催化制氢性能。两种 SubPcs(SubPc-Cl 和 SubPc-OPh)与 Ti3C2Tx MXene 纳米片杂化。实验研究了不同质量比的 SubPc/Ti3C2Tx 的氢气进化,发现优化的 SubPc-Cl/Ti3C2Tx 具有最佳的氢气产生率 105 μmol g-1 h-1。我们的研究结果为未来太阳能驱动的可持续能源转换系统开发低成本光催化剂提供了一种新的设计方法和有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient organic–inorganic heterojunction structure for enhancing the photocatalytic activity of SubPc/Ti3C2Tx towards hydrogen production†

Efficient organic–inorganic heterojunction structure for enhancing the photocatalytic activity of SubPc/Ti3C2Tx towards hydrogen production†

The production of hydrogen fuel by solar-driven photocatalytic water splitting is an attractive solution to overcome the environmental and energy problems with traditional fossil fuels. The strategies to improve the capacity of photocatalytic hydrogen production include enhancing the light absorption of materials and using co-catalysts to reduce the efficiency of electron–hole recombination. Here, we report a Schottky heterojunction photocatalyst composed of subphthalocyanine (SubPc) and Ti3C2Tx MXene, which can effectively separate photogenerated charges. The outstanding ability of SubPc to absorb visible light and the ability of Ti3C2Tx MXene to capture photogenerated electrons were applied to improve the photocatalytic hydrogen-production performance of the SubPc/Ti3C2Tx composite. Two types of SubPcs (SubPc-Cl and SubPc-OPh) were hybridized with Ti3C2Tx MXene nanosheets. The hydrogen evolution of SubPc/Ti3C2Tx with different mass ratios was experimentally investigated, and it was found that the optimized SubPc-Cl/Ti3C2Tx exhibited the best H2-production rate of 105 μmol g−1 h−1. Our findings provide a new design approach and promising strategy to develop low-cost photocatalysts for future solar-driven sustainable energy-conversion systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信