考虑设备间地震失效相关性的变电站概率地震风险分析

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Huangbin Liang, Qiang Xie
{"title":"考虑设备间地震失效相关性的变电站概率地震风险分析","authors":"Huangbin Liang,&nbsp;Qiang Xie","doi":"10.1016/j.ress.2024.110588","DOIUrl":null,"url":null,"abstract":"<div><div>When an earthquake occurs, electrical equipment in a substation exhibits a certain level of seismic failure correlation since they suffer similar ground motions and share similar structural characteristics. However, this equipment-to-equipment seismic failure correlation (E2ESFC) was neglected in previous substation-level probabilistic seismic risk analyses due to the lack of awareness and practical approach. To investigate the effect of different degrees of the E2ESFC on the substation seismic risk, an efficient method for considering partially correlated seismic failure was proposed. The concepts of “damage demand probability” and “damage capacity probability” were derived from the equipment's fragility curve. Then the partial correlation of equipment's capacity probabilities can be easily introduced and incorporated into the substation-level risk analysis through the combination of Copula functions and the Monte Carlo simulation. A case study on a real-world 220/110 kV substation using an equi-correlation model demonstrated that ignoring the E2ESFC among the same type of equipment will lead to an underestimate of the probability of seeing high seismic loss. Furthermore, a general method to assess the E2ESFC coefficients between equipment was also proposed, laying the foundation to facilitate applications of the introduced E2ESFC simulation method and to generate a more reliable system risk assessment result.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"253 ","pages":"Article 110588"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic seismic risk analysis of electrical substations considering equipment-to-equipment seismic failure correlations\",\"authors\":\"Huangbin Liang,&nbsp;Qiang Xie\",\"doi\":\"10.1016/j.ress.2024.110588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When an earthquake occurs, electrical equipment in a substation exhibits a certain level of seismic failure correlation since they suffer similar ground motions and share similar structural characteristics. However, this equipment-to-equipment seismic failure correlation (E2ESFC) was neglected in previous substation-level probabilistic seismic risk analyses due to the lack of awareness and practical approach. To investigate the effect of different degrees of the E2ESFC on the substation seismic risk, an efficient method for considering partially correlated seismic failure was proposed. The concepts of “damage demand probability” and “damage capacity probability” were derived from the equipment's fragility curve. Then the partial correlation of equipment's capacity probabilities can be easily introduced and incorporated into the substation-level risk analysis through the combination of Copula functions and the Monte Carlo simulation. A case study on a real-world 220/110 kV substation using an equi-correlation model demonstrated that ignoring the E2ESFC among the same type of equipment will lead to an underestimate of the probability of seeing high seismic loss. Furthermore, a general method to assess the E2ESFC coefficients between equipment was also proposed, laying the foundation to facilitate applications of the introduced E2ESFC simulation method and to generate a more reliable system risk assessment result.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"253 \",\"pages\":\"Article 110588\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006598\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006598","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

当地震发生时,变电站内的电气设备会表现出一定程度的地震失效相关性,因为它们遭受的地面运动相似,且具有相似的结构特征。然而,由于缺乏认识和实用方法,这种设备间地震破坏相关性(E2ESFC)在以往的变电站级概率地震风险分析中被忽视了。为了研究不同程度的 E2ESFC 对变电站地震风险的影响,提出了一种考虑部分相关地震故障的有效方法。根据设备脆性曲线推导出 "破坏需求概率 "和 "破坏能力概率 "的概念。然后,通过 Copula 函数和蒙特卡罗模拟的结合,可以轻松地将设备容量概率的部分相关性引入并纳入变电站级风险分析。利用等相关模型对现实世界中的 220/110 千伏变电站进行的案例研究表明,忽略同类型设备之间的 E2ESFC 将导致低估高地震损失概率。此外,还提出了评估设备间 E2ESFC 系数的一般方法,为促进引入的 E2ESFC 模拟方法的应用和生成更可靠的系统风险评估结果奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic seismic risk analysis of electrical substations considering equipment-to-equipment seismic failure correlations
When an earthquake occurs, electrical equipment in a substation exhibits a certain level of seismic failure correlation since they suffer similar ground motions and share similar structural characteristics. However, this equipment-to-equipment seismic failure correlation (E2ESFC) was neglected in previous substation-level probabilistic seismic risk analyses due to the lack of awareness and practical approach. To investigate the effect of different degrees of the E2ESFC on the substation seismic risk, an efficient method for considering partially correlated seismic failure was proposed. The concepts of “damage demand probability” and “damage capacity probability” were derived from the equipment's fragility curve. Then the partial correlation of equipment's capacity probabilities can be easily introduced and incorporated into the substation-level risk analysis through the combination of Copula functions and the Monte Carlo simulation. A case study on a real-world 220/110 kV substation using an equi-correlation model demonstrated that ignoring the E2ESFC among the same type of equipment will lead to an underestimate of the probability of seeing high seismic loss. Furthermore, a general method to assess the E2ESFC coefficients between equipment was also proposed, laying the foundation to facilitate applications of the introduced E2ESFC simulation method and to generate a more reliable system risk assessment result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信