{"title":"长度为 3 的自由决议的映射 II - 单元格式","authors":"Sara Angela Filippini , Lorenzo Guerrieri","doi":"10.1016/j.laa.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a perfect module of projective dimension 3 over a Gorenstein, local or graded ring <em>R</em>. We denote by <span><math><mi>F</mi></math></span> the minimal free resolution of <em>M</em>. Using the generic ring associated to the format of <span><math><mi>F</mi></math></span> we define higher structure maps, according to the theory developed by Weyman in <span><span>[26]</span></span>. We introduce a generalization of classical linkage for <em>R</em>-module using the Buchsbaum–Rim complex, and study the behavior of structure maps under this Buchsbaum–Rim linkage. In particular, for certain formats we obtain criteria for these <em>R</em>-modules to lie in the Buchsbaum–Rim linkage class of a Buchsbaum–Rim complex of length 3.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping free resolutions of length three II - Module formats\",\"authors\":\"Sara Angela Filippini , Lorenzo Guerrieri\",\"doi\":\"10.1016/j.laa.2024.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a perfect module of projective dimension 3 over a Gorenstein, local or graded ring <em>R</em>. We denote by <span><math><mi>F</mi></math></span> the minimal free resolution of <em>M</em>. Using the generic ring associated to the format of <span><math><mi>F</mi></math></span> we define higher structure maps, according to the theory developed by Weyman in <span><span>[26]</span></span>. We introduce a generalization of classical linkage for <em>R</em>-module using the Buchsbaum–Rim complex, and study the behavior of structure maps under this Buchsbaum–Rim linkage. In particular, for certain formats we obtain criteria for these <em>R</em>-modules to lie in the Buchsbaum–Rim linkage class of a Buchsbaum–Rim complex of length 3.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003896\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003896","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们用 F 表示 M 的最小自由解析。根据韦曼在[26]中提出的理论,我们使用与 F 的格式相关的泛环定义高级结构映射。我们用布赫斯鲍姆-里姆复数引入了 R 模块经典联立的广义,并研究了结构映射在布赫斯鲍姆-里姆联立下的行为。特别是,对于某些格式,我们得到了这些 R 模块位于长度为 3 的布赫斯鲍姆-里姆复数的布赫斯鲍姆-里姆联结类中的标准。
Mapping free resolutions of length three II - Module formats
Let M be a perfect module of projective dimension 3 over a Gorenstein, local or graded ring R. We denote by the minimal free resolution of M. Using the generic ring associated to the format of we define higher structure maps, according to the theory developed by Weyman in [26]. We introduce a generalization of classical linkage for R-module using the Buchsbaum–Rim complex, and study the behavior of structure maps under this Buchsbaum–Rim linkage. In particular, for certain formats we obtain criteria for these R-modules to lie in the Buchsbaum–Rim linkage class of a Buchsbaum–Rim complex of length 3.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.