{"title":"关于恒等矩阵的仿射空间","authors":"Clément de Seguins Pazzis","doi":"10.1016/j.laa.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a field, and <span><math><mi>n</mi><mo>≥</mo><mi>p</mi><mo>≥</mo><mi>r</mi><mo>></mo><mn>0</mn></math></span> be integers. In a recent article, Rubei has determined, when <span><math><mi>F</mi></math></span> is the field of real numbers, the greatest possible dimension for an affine subspace of <em>n</em>–by–<em>p</em> matrices with entries in <span><math><mi>F</mi></math></span> in which all the elements have rank <em>r</em>. In this note, we generalize her result to an arbitrary field with more than <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> elements, and we classify the spaces that reach the maximal dimension as a function of the classification of the affine subspaces of invertible matrices of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> with dimension <span><math><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span>. The latter is known to be connected to the classification of nonisotropic quadratic forms over <span><math><mi>F</mi></math></span> up to congruence.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On affine spaces of rectangular matrices with constant rank\",\"authors\":\"Clément de Seguins Pazzis\",\"doi\":\"10.1016/j.laa.2024.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>F</mi></math></span> be a field, and <span><math><mi>n</mi><mo>≥</mo><mi>p</mi><mo>≥</mo><mi>r</mi><mo>></mo><mn>0</mn></math></span> be integers. In a recent article, Rubei has determined, when <span><math><mi>F</mi></math></span> is the field of real numbers, the greatest possible dimension for an affine subspace of <em>n</em>–by–<em>p</em> matrices with entries in <span><math><mi>F</mi></math></span> in which all the elements have rank <em>r</em>. In this note, we generalize her result to an arbitrary field with more than <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> elements, and we classify the spaces that reach the maximal dimension as a function of the classification of the affine subspaces of invertible matrices of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> with dimension <span><math><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span>. The latter is known to be connected to the classification of nonisotropic quadratic forms over <span><math><mi>F</mi></math></span> up to congruence.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003847\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003847","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 F 是一个域,n≥p≥r>0 是整数。在最近的一篇文章中,鲁贝确定了当 F 是实数域时,所有元素都有秩 r 的 n-by-p 矩阵的仿射子空间的最大可能维度。在本注释中,我们将她的结果推广到元素多于 r+1 的任意域,并将达到最大维度的空间分类为维度为 (s2) 的 Ms(F) 可逆矩阵的仿射子空间分类的函数。众所周知,后者与 F 上非各向同性二次型的分类有关。
On affine spaces of rectangular matrices with constant rank
Let be a field, and be integers. In a recent article, Rubei has determined, when is the field of real numbers, the greatest possible dimension for an affine subspace of n–by–p matrices with entries in in which all the elements have rank r. In this note, we generalize her result to an arbitrary field with more than elements, and we classify the spaces that reach the maximal dimension as a function of the classification of the affine subspaces of invertible matrices of with dimension . The latter is known to be connected to the classification of nonisotropic quadratic forms over up to congruence.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.