{"title":"利用对象检测深度网络检测工业产品表面缺陷:系统综述","authors":"Yuxin Ma, Jiaxing Yin, Feng Huang, Qipeng Li","doi":"10.1007/s10462-024-10956-3","DOIUrl":null,"url":null,"abstract":"<div><p>One of the focal points in industrial product defect detection lies in the utilization of deep learning-based object detection algorithms. With the continuous introduction of these algorithms and their refined models, notable achievements have been attained. However, challenges persist in industrial settings, such as substantial variations in defect scales, the delicate balance between accuracy and speed, and the detection of small objects. Various methods have been proposed to address these challenges and propel the advancement of defect detection. To comprehensively review the latest developments in deep learning-based industrial product defect detection algorithms and foster further progress, this paper encompasses typical datasets and evaluation metrics used in industrial product defect detection, traces the development history of supervised one-stage and two-stage object detection algorithm-based and unsupervised algorithm-based industrial defect detection methods, discusses major challenges, and outlines future directions. It highlights the potential for further improving the accuracy, speed, and reliability of defect detection systems in industrial applications.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 12","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10956-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Surface defect inspection of industrial products with object detection deep networks: a systematic review\",\"authors\":\"Yuxin Ma, Jiaxing Yin, Feng Huang, Qipeng Li\",\"doi\":\"10.1007/s10462-024-10956-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the focal points in industrial product defect detection lies in the utilization of deep learning-based object detection algorithms. With the continuous introduction of these algorithms and their refined models, notable achievements have been attained. However, challenges persist in industrial settings, such as substantial variations in defect scales, the delicate balance between accuracy and speed, and the detection of small objects. Various methods have been proposed to address these challenges and propel the advancement of defect detection. To comprehensively review the latest developments in deep learning-based industrial product defect detection algorithms and foster further progress, this paper encompasses typical datasets and evaluation metrics used in industrial product defect detection, traces the development history of supervised one-stage and two-stage object detection algorithm-based and unsupervised algorithm-based industrial defect detection methods, discusses major challenges, and outlines future directions. It highlights the potential for further improving the accuracy, speed, and reliability of defect detection systems in industrial applications.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"57 12\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10956-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10956-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10956-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Surface defect inspection of industrial products with object detection deep networks: a systematic review
One of the focal points in industrial product defect detection lies in the utilization of deep learning-based object detection algorithms. With the continuous introduction of these algorithms and their refined models, notable achievements have been attained. However, challenges persist in industrial settings, such as substantial variations in defect scales, the delicate balance between accuracy and speed, and the detection of small objects. Various methods have been proposed to address these challenges and propel the advancement of defect detection. To comprehensively review the latest developments in deep learning-based industrial product defect detection algorithms and foster further progress, this paper encompasses typical datasets and evaluation metrics used in industrial product defect detection, traces the development history of supervised one-stage and two-stage object detection algorithm-based and unsupervised algorithm-based industrial defect detection methods, discusses major challenges, and outlines future directions. It highlights the potential for further improving the accuracy, speed, and reliability of defect detection systems in industrial applications.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.