基于蒙特卡洛的多灾害和高阶多米诺效应时空演化过程建模方法

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
{"title":"基于蒙特卡洛的多灾害和高阶多米诺效应时空演化过程建模方法","authors":"","doi":"10.1016/j.ress.2024.110532","DOIUrl":null,"url":null,"abstract":"<div><div>The domino effect in chemical industrial parks represents a complex phenomenon where accidents such as leaks, fires, and explosions can occur either simultaneously or in sequence. The progression of domino accidents is highly uncertain, making it difficult to anticipate the spatial-temporal development of such accidents. This paper presents a model that aims to forecast the evolution of domino effects by considering the critical thermal dose and utilizing the Probit model to assess the escalation of incidents caused by thermal radiation and overpressure. To tackle the complexities associated with multiple installations, high order, and various accident types in modeling domino effect accidents, the model incorporates Monte Carlo simulation methods. The model validation and case studies have demonstrated the effectiveness of this approach in simulating the progression of domino accidents initiated by a range of primary accidents. This approach enables the prediction of potential accident chains and the dynamic failure probability of hazardous installations, including the identification of the initial installation likely to fail. The insights gained from this research offer guidance for the prevention and mitigation of the domino effect in chemical accidents.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Monte Carlo-based modeling method for the spatial-temporal evolution process of multi-hazard and higher-order domino effect\",\"authors\":\"\",\"doi\":\"10.1016/j.ress.2024.110532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The domino effect in chemical industrial parks represents a complex phenomenon where accidents such as leaks, fires, and explosions can occur either simultaneously or in sequence. The progression of domino accidents is highly uncertain, making it difficult to anticipate the spatial-temporal development of such accidents. This paper presents a model that aims to forecast the evolution of domino effects by considering the critical thermal dose and utilizing the Probit model to assess the escalation of incidents caused by thermal radiation and overpressure. To tackle the complexities associated with multiple installations, high order, and various accident types in modeling domino effect accidents, the model incorporates Monte Carlo simulation methods. The model validation and case studies have demonstrated the effectiveness of this approach in simulating the progression of domino accidents initiated by a range of primary accidents. This approach enables the prediction of potential accident chains and the dynamic failure probability of hazardous installations, including the identification of the initial installation likely to fail. The insights gained from this research offer guidance for the prevention and mitigation of the domino effect in chemical accidents.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006045\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006045","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

化学工业园区的多米诺骨牌效应是一种复杂的现象,泄漏、火灾和爆炸等事故可能同时或依次发生。多米诺骨牌事故的发展具有高度不确定性,因此很难预测此类事故的时空发展。本文提出了一个模型,旨在通过考虑临界热剂量和利用 Probit 模型评估热辐射和超压导致的事故升级来预测多米诺效应的演变。为了解决多米诺骨牌效应事故建模中与多装置、高阶和各种事故类型相关的复杂问题,该模型采用了蒙特卡罗模拟方法。模型验证和案例研究表明,这种方法在模拟由一系列初级事故引发的多米诺骨牌事故进展方面非常有效。这种方法可以预测潜在的事故链和危险装置的动态失效概率,包括确定可能失效的初始装置。从这项研究中获得的见解为预防和减轻化学事故中的多米诺效应提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monte Carlo-based modeling method for the spatial-temporal evolution process of multi-hazard and higher-order domino effect
The domino effect in chemical industrial parks represents a complex phenomenon where accidents such as leaks, fires, and explosions can occur either simultaneously or in sequence. The progression of domino accidents is highly uncertain, making it difficult to anticipate the spatial-temporal development of such accidents. This paper presents a model that aims to forecast the evolution of domino effects by considering the critical thermal dose and utilizing the Probit model to assess the escalation of incidents caused by thermal radiation and overpressure. To tackle the complexities associated with multiple installations, high order, and various accident types in modeling domino effect accidents, the model incorporates Monte Carlo simulation methods. The model validation and case studies have demonstrated the effectiveness of this approach in simulating the progression of domino accidents initiated by a range of primary accidents. This approach enables the prediction of potential accident chains and the dynamic failure probability of hazardous installations, including the identification of the initial installation likely to fail. The insights gained from this research offer guidance for the prevention and mitigation of the domino effect in chemical accidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信