基于动态时序卷积网络的核反应堆控制棒驱动机构剩余使用寿命预测

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Chen Wang , Liming Zhang , Ling Chen , Tian Tan , Cong Zhang
{"title":"基于动态时序卷积网络的核反应堆控制棒驱动机构剩余使用寿命预测","authors":"Chen Wang ,&nbsp;Liming Zhang ,&nbsp;Ling Chen ,&nbsp;Tian Tan ,&nbsp;Cong Zhang","doi":"10.1016/j.ress.2024.110580","DOIUrl":null,"url":null,"abstract":"<div><div>The control rod drive mechanism (CRDM) is a critical equipment of the nuclear reactor, and the prediction of its remaining useful life (RUL) is important for the efficient maintenance and ensuring the safe, reliable operation of nuclear power plants. In this paper, a novel framework for the RUL prediction of CRDM is proposed, which is a dynamic temporal convolution network (DTCN) based on dynamic activation function and attention mechanism. Firstly, the temporal convolution network (TCN) is used as the backbone of the prediction model, to extract the temporal dependence of the input data. Next, the dynamic activation function DReLU is integrated into the TCN, which can dynamically activate features and capture variable degradation information. Then, introducing the attention mechanism improves the influence of important high-level features extracted by the network on RUL prediction, thereby improving the efficiency of feature extraction in the network. Finally, the DTCN outputs the predicted RUL by performing non-linear mapping on the extracted features. The CRDM accelerated life test platform is established and a series of experiments are conducted using the collected CRDM full-life vibration dataset. The results demonstrated the performance and advantages of the proposed method.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network\",\"authors\":\"Chen Wang ,&nbsp;Liming Zhang ,&nbsp;Ling Chen ,&nbsp;Tian Tan ,&nbsp;Cong Zhang\",\"doi\":\"10.1016/j.ress.2024.110580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The control rod drive mechanism (CRDM) is a critical equipment of the nuclear reactor, and the prediction of its remaining useful life (RUL) is important for the efficient maintenance and ensuring the safe, reliable operation of nuclear power plants. In this paper, a novel framework for the RUL prediction of CRDM is proposed, which is a dynamic temporal convolution network (DTCN) based on dynamic activation function and attention mechanism. Firstly, the temporal convolution network (TCN) is used as the backbone of the prediction model, to extract the temporal dependence of the input data. Next, the dynamic activation function DReLU is integrated into the TCN, which can dynamically activate features and capture variable degradation information. Then, introducing the attention mechanism improves the influence of important high-level features extracted by the network on RUL prediction, thereby improving the efficiency of feature extraction in the network. Finally, the DTCN outputs the predicted RUL by performing non-linear mapping on the extracted features. The CRDM accelerated life test platform is established and a series of experiments are conducted using the collected CRDM full-life vibration dataset. The results demonstrated the performance and advantages of the proposed method.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006513\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006513","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

控制棒驱动机构(CRDM)是核反应堆的关键设备,预测其剩余使用寿命(RUL)对于高效维护和确保核电站安全可靠运行非常重要。本文提出了一种新颖的 CRDM RUL 预测框架,即基于动态激活函数和注意力机制的动态时空卷积网络(DTCN)。首先,将时态卷积网络(TCN)作为预测模型的骨干,提取输入数据的时态依赖性。然后,将动态激活函数 DReLU 集成到 TCN 中,该函数可以动态激活特征并捕捉变量退化信息。然后,引入关注机制,提高网络提取的重要高级特征对 RUL 预测的影响,从而提高网络特征提取的效率。最后,DTCN 通过对提取的特征进行非线性映射,输出预测的 RUL。建立了 CRDM 加速寿命测试平台,并利用收集到的 CRDM 全寿命振动数据集进行了一系列实验。结果证明了所提方法的性能和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network
The control rod drive mechanism (CRDM) is a critical equipment of the nuclear reactor, and the prediction of its remaining useful life (RUL) is important for the efficient maintenance and ensuring the safe, reliable operation of nuclear power plants. In this paper, a novel framework for the RUL prediction of CRDM is proposed, which is a dynamic temporal convolution network (DTCN) based on dynamic activation function and attention mechanism. Firstly, the temporal convolution network (TCN) is used as the backbone of the prediction model, to extract the temporal dependence of the input data. Next, the dynamic activation function DReLU is integrated into the TCN, which can dynamically activate features and capture variable degradation information. Then, introducing the attention mechanism improves the influence of important high-level features extracted by the network on RUL prediction, thereby improving the efficiency of feature extraction in the network. Finally, the DTCN outputs the predicted RUL by performing non-linear mapping on the extracted features. The CRDM accelerated life test platform is established and a series of experiments are conducted using the collected CRDM full-life vibration dataset. The results demonstrated the performance and advantages of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信