{"title":"具有可分离相位的部分相干光束的高效相干模式数值表示法","authors":"Milo W. Hyde IV , Carolina Rickenstorff","doi":"10.1016/j.optlastec.2024.111950","DOIUrl":null,"url":null,"abstract":"<div><div>We present a method to numerically compute the coherent mode representations (CMRs) for partially coherent beams with separable phases. This special class of random light field has the ability to self-focus and is resistant to turbulence-induced degradation, making it potentially useful in applications such as optical communications. We validate our method by generating (in simulation) two such sources from the literature using their computed CMRs. Lastly, we conclude with a summary of our approach and a discussion of applications.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111950"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerically efficient coherent mode representations for partially coherent beams with separable phases\",\"authors\":\"Milo W. Hyde IV , Carolina Rickenstorff\",\"doi\":\"10.1016/j.optlastec.2024.111950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a method to numerically compute the coherent mode representations (CMRs) for partially coherent beams with separable phases. This special class of random light field has the ability to self-focus and is resistant to turbulence-induced degradation, making it potentially useful in applications such as optical communications. We validate our method by generating (in simulation) two such sources from the literature using their computed CMRs. Lastly, we conclude with a summary of our approach and a discussion of applications.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"181 \",\"pages\":\"Article 111950\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224014087\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224014087","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Numerically efficient coherent mode representations for partially coherent beams with separable phases
We present a method to numerically compute the coherent mode representations (CMRs) for partially coherent beams with separable phases. This special class of random light field has the ability to self-focus and is resistant to turbulence-induced degradation, making it potentially useful in applications such as optical communications. We validate our method by generating (in simulation) two such sources from the literature using their computed CMRs. Lastly, we conclude with a summary of our approach and a discussion of applications.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems