Xinyu Song , Sen Yan , Yong Wang , Haojie Zhang , Jiacheng Xue , Tengfei Liu , Xiaoyong Tian , Lingling Wu , Hanqing Jiang , Dichen Li
{"title":"采用遗传算法的机械超材料用于不同有效载荷的振动隔离","authors":"Xinyu Song , Sen Yan , Yong Wang , Haojie Zhang , Jiacheng Xue , Tengfei Liu , Xiaoyong Tian , Lingling Wu , Hanqing Jiang , Dichen Li","doi":"10.1016/j.jmat.2024.100944","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical vibration isolation with adaptable payloads has always been one of the most challenging topics in mechanical engineering. In this study, we address this problem by introducing machine learning method to search for quasi-zero stiffness metamaterials with arbitrarily predetermined payloads and by employing multi-material 3D printing technology to fabricate them as an integrated part. Dynamic tests demonstrate that both the single- and multi-payload metamaterials can effectively isolate mechanical vibration in low frequency domain. Importantly, the payload of the metamaterial could be arbitrarily designed according to the application scenario and could function at multiple payloads. This design strategy opens new avenues for mechanical energy shielding under various scenarios and under variable loading conditions.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100944"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic algorithm-enabled mechanical metamaterials for vibration isolation with different payloads\",\"authors\":\"Xinyu Song , Sen Yan , Yong Wang , Haojie Zhang , Jiacheng Xue , Tengfei Liu , Xiaoyong Tian , Lingling Wu , Hanqing Jiang , Dichen Li\",\"doi\":\"10.1016/j.jmat.2024.100944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanical vibration isolation with adaptable payloads has always been one of the most challenging topics in mechanical engineering. In this study, we address this problem by introducing machine learning method to search for quasi-zero stiffness metamaterials with arbitrarily predetermined payloads and by employing multi-material 3D printing technology to fabricate them as an integrated part. Dynamic tests demonstrate that both the single- and multi-payload metamaterials can effectively isolate mechanical vibration in low frequency domain. Importantly, the payload of the metamaterial could be arbitrarily designed according to the application scenario and could function at multiple payloads. This design strategy opens new avenues for mechanical energy shielding under various scenarios and under variable loading conditions.</div></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 3\",\"pages\":\"Article 100944\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824001837\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001837","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Genetic algorithm-enabled mechanical metamaterials for vibration isolation with different payloads
Mechanical vibration isolation with adaptable payloads has always been one of the most challenging topics in mechanical engineering. In this study, we address this problem by introducing machine learning method to search for quasi-zero stiffness metamaterials with arbitrarily predetermined payloads and by employing multi-material 3D printing technology to fabricate them as an integrated part. Dynamic tests demonstrate that both the single- and multi-payload metamaterials can effectively isolate mechanical vibration in low frequency domain. Importantly, the payload of the metamaterial could be arbitrarily designed according to the application scenario and could function at multiple payloads. This design strategy opens new avenues for mechanical energy shielding under various scenarios and under variable loading conditions.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.