Khalid Iqbal, Muhammad Ibrahim, Anam Khattak, Sarah Ali Khan, Ghazala Nawaz
{"title":"外源应用谷胱甘肽通过调节抗氧化酶防御系统诱导小麦耐受重金属胁迫","authors":"Khalid Iqbal, Muhammad Ibrahim, Anam Khattak, Sarah Ali Khan, Ghazala Nawaz","doi":"10.1007/s11738-024-03721-0","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metal stress destroys plants growth and yield. Glutathione (GSH) is a well-known antioxidant that promotes plant growth by protecting it from abiotic stresses including heavy metal toxicity. Although much has been documented about the role of glutathione in securing plants from stress, its role in safeguarding wheat growth under mercury (Hg) and arsenic (As) stresses is unknown. The present work investigates wheat responses to Hg and As stresses under the exogenous application of GSH. The result showed that Hg and As stresses greatly reduced seed germination and seedling growth such as root/shoot length and fresh weight. Photosynthetic pigments, i.e., chlorophyll a, b, and carotenoid were reduced. However, the H<sub>2</sub>O<sub>2</sub> and lipid peroxidation levels were increased under Hg and As stresses in wheat seedlings. The antioxidant enzymatic activities such SOD, POD, and APX increased, while CAT activity decreased under Hg and As stresses. Importantly, the application of 2 mM GSH alone or in combination with Hg and As enhanced seed germination rate, root/shoot length, fresh weight, and photosynthetic pigments in wheat. Contrarily, the level of H<sub>2</sub>O<sub>2</sub> and lipid peroxidation were decreased under the individual and combined treatment of Hg + GSH and As + GSH. The antioxidant enzymatic activities such as SOD, POD, and APX were lowered, while CAT activity was enhanced by GSH under Hg and As stress. The present research concludes that supplementation of exogenous GSH can play a significant role in fostering the sensitivity of wheat to Hg and As stress by reducing oxidative stress and modulating the levels of antioxidant enzymes.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 10","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous application of glutathione induces wheat tolerance to heavy metal stress by modulating the antioxidative enzymatic defenses\",\"authors\":\"Khalid Iqbal, Muhammad Ibrahim, Anam Khattak, Sarah Ali Khan, Ghazala Nawaz\",\"doi\":\"10.1007/s11738-024-03721-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heavy metal stress destroys plants growth and yield. Glutathione (GSH) is a well-known antioxidant that promotes plant growth by protecting it from abiotic stresses including heavy metal toxicity. Although much has been documented about the role of glutathione in securing plants from stress, its role in safeguarding wheat growth under mercury (Hg) and arsenic (As) stresses is unknown. The present work investigates wheat responses to Hg and As stresses under the exogenous application of GSH. The result showed that Hg and As stresses greatly reduced seed germination and seedling growth such as root/shoot length and fresh weight. Photosynthetic pigments, i.e., chlorophyll a, b, and carotenoid were reduced. However, the H<sub>2</sub>O<sub>2</sub> and lipid peroxidation levels were increased under Hg and As stresses in wheat seedlings. The antioxidant enzymatic activities such SOD, POD, and APX increased, while CAT activity decreased under Hg and As stresses. Importantly, the application of 2 mM GSH alone or in combination with Hg and As enhanced seed germination rate, root/shoot length, fresh weight, and photosynthetic pigments in wheat. Contrarily, the level of H<sub>2</sub>O<sub>2</sub> and lipid peroxidation were decreased under the individual and combined treatment of Hg + GSH and As + GSH. The antioxidant enzymatic activities such as SOD, POD, and APX were lowered, while CAT activity was enhanced by GSH under Hg and As stress. The present research concludes that supplementation of exogenous GSH can play a significant role in fostering the sensitivity of wheat to Hg and As stress by reducing oxidative stress and modulating the levels of antioxidant enzymes.</p></div>\",\"PeriodicalId\":6973,\"journal\":{\"name\":\"Acta Physiologiae Plantarum\",\"volume\":\"46 10\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologiae Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-024-03721-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03721-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Exogenous application of glutathione induces wheat tolerance to heavy metal stress by modulating the antioxidative enzymatic defenses
Heavy metal stress destroys plants growth and yield. Glutathione (GSH) is a well-known antioxidant that promotes plant growth by protecting it from abiotic stresses including heavy metal toxicity. Although much has been documented about the role of glutathione in securing plants from stress, its role in safeguarding wheat growth under mercury (Hg) and arsenic (As) stresses is unknown. The present work investigates wheat responses to Hg and As stresses under the exogenous application of GSH. The result showed that Hg and As stresses greatly reduced seed germination and seedling growth such as root/shoot length and fresh weight. Photosynthetic pigments, i.e., chlorophyll a, b, and carotenoid were reduced. However, the H2O2 and lipid peroxidation levels were increased under Hg and As stresses in wheat seedlings. The antioxidant enzymatic activities such SOD, POD, and APX increased, while CAT activity decreased under Hg and As stresses. Importantly, the application of 2 mM GSH alone or in combination with Hg and As enhanced seed germination rate, root/shoot length, fresh weight, and photosynthetic pigments in wheat. Contrarily, the level of H2O2 and lipid peroxidation were decreased under the individual and combined treatment of Hg + GSH and As + GSH. The antioxidant enzymatic activities such as SOD, POD, and APX were lowered, while CAT activity was enhanced by GSH under Hg and As stress. The present research concludes that supplementation of exogenous GSH can play a significant role in fostering the sensitivity of wheat to Hg and As stress by reducing oxidative stress and modulating the levels of antioxidant enzymes.
期刊介绍:
Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry.
The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.