使用单电压变换器首次实现基于闪存的二进制神经网络批量归一化

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sungmin Hwang;Wangjoo Lee;Jeong Woo Park;Dongwoo Suh
{"title":"使用单电压变换器首次实现基于闪存的二进制神经网络批量归一化","authors":"Sungmin Hwang;Wangjoo Lee;Jeong Woo Park;Dongwoo Suh","doi":"10.1109/TNANO.2024.3466128","DOIUrl":null,"url":null,"abstract":"Batch normalization (BN) is a technique used to enhance training speed and generalization performance by mitigating internal covariate shifts. However, implementing BN in hardware presents challenges due to the need for an additional complex circuit to normalize, scale and shift activations. We proposed a hardware binary neural network (BNN) system capable of BN in hardware, which is consist of an AND-type flash memory array as a synapse and a voltage sense amplifier (VSA) as a neuron. In this system, hardware BN was implemented using a voltage shifter by adjusting the threshold of the binary neuron. To validate the effectiveness of the proposed hardware-based BNN system, we fabricated a charge trap flash with a gate stack of SiO\n<sub>2</sub>\n/Si\n<sub>3</sub>\nN\n<sub>4</sub>\n/SiO\n<sub>2</sub>\n. The electrical characteristics were modelled by using BSIM3 model parameters so that the proposed circuit was successfully demonstrated by a SPICE simulation. Moreover, variation effects of the voltage shifter were also analyzed using Monte Carlo simulation. Finally, the performance of the proposed system was proved by incorporating the SPICE results into a high-level simulation of binary \n<italic>LeNet-5</i>\n for MNIST pattern recognition, resulting in the improvement of the proposed system in terms of power and area, compared to the previous studies.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"677-683"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Realization of Batch Normalization in Flash-Based Binary Neural Networks Using a Single Voltage Shifter\",\"authors\":\"Sungmin Hwang;Wangjoo Lee;Jeong Woo Park;Dongwoo Suh\",\"doi\":\"10.1109/TNANO.2024.3466128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batch normalization (BN) is a technique used to enhance training speed and generalization performance by mitigating internal covariate shifts. However, implementing BN in hardware presents challenges due to the need for an additional complex circuit to normalize, scale and shift activations. We proposed a hardware binary neural network (BNN) system capable of BN in hardware, which is consist of an AND-type flash memory array as a synapse and a voltage sense amplifier (VSA) as a neuron. In this system, hardware BN was implemented using a voltage shifter by adjusting the threshold of the binary neuron. To validate the effectiveness of the proposed hardware-based BNN system, we fabricated a charge trap flash with a gate stack of SiO\\n<sub>2</sub>\\n/Si\\n<sub>3</sub>\\nN\\n<sub>4</sub>\\n/SiO\\n<sub>2</sub>\\n. The electrical characteristics were modelled by using BSIM3 model parameters so that the proposed circuit was successfully demonstrated by a SPICE simulation. Moreover, variation effects of the voltage shifter were also analyzed using Monte Carlo simulation. Finally, the performance of the proposed system was proved by incorporating the SPICE results into a high-level simulation of binary \\n<italic>LeNet-5</i>\\n for MNIST pattern recognition, resulting in the improvement of the proposed system in terms of power and area, compared to the previous studies.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"677-683\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10688406/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10688406/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

批量归一化(BN)是一种通过减轻内部协变量偏移来提高训练速度和泛化性能的技术。然而,由于需要额外的复杂电路来对激活进行归一化、缩放和移位,在硬件中实现 BN 存在挑战。我们提出了一种能够在硬件中实现 BNN 的硬件二元神经网络(BNN)系统,该系统由一个作为突触的 AND 型闪存阵列和一个作为神经元的电压感应放大器(VSA)组成。在该系统中,通过调整二进制神经元的阈值,使用电压移位器实现了硬件 BN。为了验证所提出的基于硬件的 BNN 系统的有效性,我们制作了一个电荷阱闪存,栅极堆叠为 SiO2/Si3N4/SiO2。我们使用 BSIM3 模型参数对其电气特性进行了建模,并通过 SPICE 仿真成功演示了所提出的电路。此外,还利用蒙特卡罗仿真分析了电压变换器的变化效应。最后,通过将 SPICE 结果纳入用于 MNIST 模式识别的二进制 LeNet-5 高级仿真,证明了所提系统的性能,与之前的研究相比,所提系统在功耗和面积方面都有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First Realization of Batch Normalization in Flash-Based Binary Neural Networks Using a Single Voltage Shifter
Batch normalization (BN) is a technique used to enhance training speed and generalization performance by mitigating internal covariate shifts. However, implementing BN in hardware presents challenges due to the need for an additional complex circuit to normalize, scale and shift activations. We proposed a hardware binary neural network (BNN) system capable of BN in hardware, which is consist of an AND-type flash memory array as a synapse and a voltage sense amplifier (VSA) as a neuron. In this system, hardware BN was implemented using a voltage shifter by adjusting the threshold of the binary neuron. To validate the effectiveness of the proposed hardware-based BNN system, we fabricated a charge trap flash with a gate stack of SiO 2 /Si 3 N 4 /SiO 2 . The electrical characteristics were modelled by using BSIM3 model parameters so that the proposed circuit was successfully demonstrated by a SPICE simulation. Moreover, variation effects of the voltage shifter were also analyzed using Monte Carlo simulation. Finally, the performance of the proposed system was proved by incorporating the SPICE results into a high-level simulation of binary LeNet-5 for MNIST pattern recognition, resulting in the improvement of the proposed system in terms of power and area, compared to the previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信