关于换向扩展的唯一性和计算

IF 1 3区 数学 Q1 MATHEMATICS
Pascal Koiran
{"title":"关于换向扩展的唯一性和计算","authors":"Pascal Koiran","doi":"10.1016/j.laa.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>A tuple <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> of matrices of size <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span> is said to be a <em>commuting extension</em> of a tuple <span><math><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> of matrices of size <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> if the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> pairwise commute and each <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> sits in the upper left corner of a block decomposition of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (here, <em>r</em> and <em>n</em> are two arbitrary integers with <span><math><mi>n</mi><mo>&lt;</mo><mi>r</mi></math></span>). This notion was discovered and rediscovered in several contexts including algebraic complexity theory (in Strassen's work on tensor rank), in numerical analysis for the construction of cubature formulas and in quantum mechanics for the study of computational methods and the study of the so-called “quantum Zeno dynamics.” Commuting extensions have also attracted the attention of the linear algebra community. In this paper we present 3 types of results:<ul><li><span>(i)</span><span><div>Theorems on the uniqueness of commuting extensions for three matrices or more.</div></span></li><li><span>(ii)</span><span><div>Algorithms for the computation of commuting extensions of minimal size. These algorithms work under the same assumptions as our uniqueness theorems. They are applicable up to <span><math><mi>r</mi><mo>=</mo><mn>4</mn><mi>n</mi><mo>/</mo><mn>3</mn></math></span>, and are apparently the first provably efficient algorithms for this problem applicable beyond <span><math><mi>r</mi><mo>=</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</div></span></li><li><span>(iii)</span><span><div>A genericity theorem showing that our algorithms and uniqueness theorems can be applied to a wide range of input matrices.</div></span></li></ul></div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the uniqueness and computation of commuting extensions\",\"authors\":\"Pascal Koiran\",\"doi\":\"10.1016/j.laa.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A tuple <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> of matrices of size <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span> is said to be a <em>commuting extension</em> of a tuple <span><math><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> of matrices of size <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> if the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> pairwise commute and each <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> sits in the upper left corner of a block decomposition of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (here, <em>r</em> and <em>n</em> are two arbitrary integers with <span><math><mi>n</mi><mo>&lt;</mo><mi>r</mi></math></span>). This notion was discovered and rediscovered in several contexts including algebraic complexity theory (in Strassen's work on tensor rank), in numerical analysis for the construction of cubature formulas and in quantum mechanics for the study of computational methods and the study of the so-called “quantum Zeno dynamics.” Commuting extensions have also attracted the attention of the linear algebra community. In this paper we present 3 types of results:<ul><li><span>(i)</span><span><div>Theorems on the uniqueness of commuting extensions for three matrices or more.</div></span></li><li><span>(ii)</span><span><div>Algorithms for the computation of commuting extensions of minimal size. These algorithms work under the same assumptions as our uniqueness theorems. They are applicable up to <span><math><mi>r</mi><mo>=</mo><mn>4</mn><mi>n</mi><mo>/</mo><mn>3</mn></math></span>, and are apparently the first provably efficient algorithms for this problem applicable beyond <span><math><mi>r</mi><mo>=</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</div></span></li><li><span>(iii)</span><span><div>A genericity theorem showing that our algorithms and uniqueness theorems can be applied to a wide range of input matrices.</div></span></li></ul></div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003835\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003835","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

大小为 r×r 的矩阵元组 (Z1,...,Zp) 是大小为 n×n 的矩阵元组 (A1,...,Ap) 的换向扩展,如果 Zi 成对换向,并且每个 Ai 都位于 Zi 的块分解的左上角(这里,r 和 n 是两个任意整数,n<r)。这一概念在多个领域被发现和重新发现,包括代数复杂性理论(在斯特拉森关于张量秩的研究中)、用于构造立方公式的数值分析,以及用于研究计算方法和所谓 "量子芝诺动力学 "的量子力学。换元扩展也引起了线性代数界的关注。在本文中,我们提出了三类结果:(i) 三个或更多矩阵的换元扩展唯一性定理;(ii) 计算最小尺寸换元扩展的算法。这些算法的假设条件与我们的唯一性定理相同。(iii)通用性定理表明我们的算法和唯一性定理可以应用于广泛的输入矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the uniqueness and computation of commuting extensions
A tuple (Z1,,Zp) of matrices of size r×r is said to be a commuting extension of a tuple (A1,,Ap) of matrices of size n×n if the Zi pairwise commute and each Ai sits in the upper left corner of a block decomposition of Zi (here, r and n are two arbitrary integers with n<r). This notion was discovered and rediscovered in several contexts including algebraic complexity theory (in Strassen's work on tensor rank), in numerical analysis for the construction of cubature formulas and in quantum mechanics for the study of computational methods and the study of the so-called “quantum Zeno dynamics.” Commuting extensions have also attracted the attention of the linear algebra community. In this paper we present 3 types of results:
  • (i)
    Theorems on the uniqueness of commuting extensions for three matrices or more.
  • (ii)
    Algorithms for the computation of commuting extensions of minimal size. These algorithms work under the same assumptions as our uniqueness theorems. They are applicable up to r=4n/3, and are apparently the first provably efficient algorithms for this problem applicable beyond r=n+1.
  • (iii)
    A genericity theorem showing that our algorithms and uniqueness theorems can be applied to a wide range of input matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信