用于边缘云环境中实时异常检测决策支持的 ConvLSTMBNN-DT 和 GPT-4 混合方法

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Radityo Fajar Pamungkas, Ida Bagus Krishna Yoga Utama, Khairi Hindriyandhito, Yeong Min Jang
{"title":"用于边缘云环境中实时异常检测决策支持的 ConvLSTMBNN-DT 和 GPT-4 混合方法","authors":"Radityo Fajar Pamungkas,&nbsp;Ida Bagus Krishna Yoga Utama,&nbsp;Khairi Hindriyandhito,&nbsp;Yeong Min Jang","doi":"10.1016/j.icte.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>Anomaly detection is a critical requirement across diverse domains to promptly identify abnormal behavior. Conventional approaches often face limitations with uninterpretable anomaly detection results, impeding efficient decision-making processes. This paper introduces a novel hybrid approach, the convolutional LSTM Bayesian neural network with nonparametric dynamic thresholding (ConvLSTMBNN-DT) for prediction-based anomaly detection. In addition, the model integrates fine-tuned generative pre-training version 4 (GPT-4) to provide human-interpretable explanations in edge–cloud environments. The proposed method demonstrates exceptional performance, achieving an average <span><math><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></math></span> of 0.91 and an area under the receiver operating characteristic curve (<span><math><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></math></span>) of 0.86. Additionally, it effectively offers comprehensible decision-support explanations.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 5","pages":"Pages 1026-1033"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach of ConvLSTMBNN-DT and GPT-4 for real-time anomaly detection decision support in edge–cloud environments\",\"authors\":\"Radityo Fajar Pamungkas,&nbsp;Ida Bagus Krishna Yoga Utama,&nbsp;Khairi Hindriyandhito,&nbsp;Yeong Min Jang\",\"doi\":\"10.1016/j.icte.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anomaly detection is a critical requirement across diverse domains to promptly identify abnormal behavior. Conventional approaches often face limitations with uninterpretable anomaly detection results, impeding efficient decision-making processes. This paper introduces a novel hybrid approach, the convolutional LSTM Bayesian neural network with nonparametric dynamic thresholding (ConvLSTMBNN-DT) for prediction-based anomaly detection. In addition, the model integrates fine-tuned generative pre-training version 4 (GPT-4) to provide human-interpretable explanations in edge–cloud environments. The proposed method demonstrates exceptional performance, achieving an average <span><math><mrow><mi>F</mi><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></math></span> of 0.91 and an area under the receiver operating characteristic curve (<span><math><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></math></span>) of 0.86. Additionally, it effectively offers comprehensible decision-support explanations.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 5\",\"pages\":\"Pages 1026-1033\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000857\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000857","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

异常检测是不同领域及时识别异常行为的关键要求。传统方法往往面临无法解读异常检测结果的限制,阻碍了高效的决策过程。本文介绍了一种新颖的混合方法,即具有非参数动态阈值的卷积 LSTM 贝叶斯神经网络(ConvLSTMBNN-DT),用于基于预测的异常检测。此外,该模型还集成了微调生成预训练第 4 版(GPT-4),以便在边缘云环境中提供人类可理解的解释。所提出的方法表现出卓越的性能,平均 F1 分数达到 0.91,接收器工作特征曲线下面积 (AUC) 为 0.86。此外,它还有效地提供了可理解的决策支持解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid approach of ConvLSTMBNN-DT and GPT-4 for real-time anomaly detection decision support in edge–cloud environments
Anomaly detection is a critical requirement across diverse domains to promptly identify abnormal behavior. Conventional approaches often face limitations with uninterpretable anomaly detection results, impeding efficient decision-making processes. This paper introduces a novel hybrid approach, the convolutional LSTM Bayesian neural network with nonparametric dynamic thresholding (ConvLSTMBNN-DT) for prediction-based anomaly detection. In addition, the model integrates fine-tuned generative pre-training version 4 (GPT-4) to provide human-interpretable explanations in edge–cloud environments. The proposed method demonstrates exceptional performance, achieving an average F1score of 0.91 and an area under the receiver operating characteristic curve (AUC) of 0.86. Additionally, it effectively offers comprehensible decision-support explanations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信