Farzad Mohammadi, Charles Joly Beauparlant, Stéphanie Bianco, Arnaud Droit, Nicolas Bertrand, Iwona Rudkowska
{"title":"反刍动物反式脂肪酸摄入调节 C57BL/6 小鼠脂肪组织转录组中的炎症通路","authors":"Farzad Mohammadi, Charles Joly Beauparlant, Stéphanie Bianco, Arnaud Droit, Nicolas Bertrand, Iwona Rudkowska","doi":"10.1002/mnfr.202400290","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Scope</h3>\n \n <p>The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; <i>trans</i>-18:1<i>n</i>-9) and <i>trans</i>-palmitoleic acid (TPA; <i>trans</i>-16:1<i>n</i>-7), elucidating their different effects on inflammation and glucose metabolism.</p>\n </section>\n \n <section>\n \n <h3> Methods and results</h3>\n \n <p>Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] >1.5, <i>p</i> < 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine–cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.</p>\n </section>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400290","citationCount":"0","resultStr":"{\"title\":\"Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice\",\"authors\":\"Farzad Mohammadi, Charles Joly Beauparlant, Stéphanie Bianco, Arnaud Droit, Nicolas Bertrand, Iwona Rudkowska\",\"doi\":\"10.1002/mnfr.202400290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Scope</h3>\\n \\n <p>The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; <i>trans</i>-18:1<i>n</i>-9) and <i>trans</i>-palmitoleic acid (TPA; <i>trans</i>-16:1<i>n</i>-7), elucidating their different effects on inflammation and glucose metabolism.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and results</h3>\\n \\n <p>Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] >1.5, <i>p</i> < 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine–cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.</p>\\n </section>\\n </div>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"68 21\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400290\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400290\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400290","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice
Scope
The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; trans-18:1n-9) and trans-palmitoleic acid (TPA; trans-16:1n-7), elucidating their different effects on inflammation and glucose metabolism.
Methods and results
Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] >1.5, p < 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine–cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling.
Conclusion
TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.