KdV 和 mKdV 层次和舒尔 Q 函数

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Sumitaka Tabata
{"title":"KdV 和 mKdV 层次和舒尔 Q 函数","authors":"Sumitaka Tabata","doi":"10.1007/s11040-024-09493-w","DOIUrl":null,"url":null,"abstract":"<div><p>We prove two conjectures on the Korteweg-de Vries (KdV) and modified KdV (mKdV) hierarchies and Schur Q-functions presented by Yamada. The first one is that the functions defined by Sato and Mori in 1980 coincide with Schur Q-functions indexed by even or odd strict partitions. Mizukawa, Nakajima, and Yamada gave an expression for this function using symmetric functions and Littlewood-Richardson coefficients. We prove that this expression coincides with the Schur Q-function by using the formula of Lascoux, Leclerc, and Thibon. The second one is that Schur Q-functions indexed by strict partitions which have odd parts form a basis for the space of Hirota polynomials of the KdV hierarchy, and that Schur Q-functions indexed by strict partitions which have even parts form a basis for the space of Hirota polynomials of the mKdV hierarchy. This conjecture is verified by rewriting the generating series of the KdV and mKdV hierarchies using the techniques of symmetric functions.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KdV and mKdV Hierarchies and Schur Q-functions\",\"authors\":\"Sumitaka Tabata\",\"doi\":\"10.1007/s11040-024-09493-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove two conjectures on the Korteweg-de Vries (KdV) and modified KdV (mKdV) hierarchies and Schur Q-functions presented by Yamada. The first one is that the functions defined by Sato and Mori in 1980 coincide with Schur Q-functions indexed by even or odd strict partitions. Mizukawa, Nakajima, and Yamada gave an expression for this function using symmetric functions and Littlewood-Richardson coefficients. We prove that this expression coincides with the Schur Q-function by using the formula of Lascoux, Leclerc, and Thibon. The second one is that Schur Q-functions indexed by strict partitions which have odd parts form a basis for the space of Hirota polynomials of the KdV hierarchy, and that Schur Q-functions indexed by strict partitions which have even parts form a basis for the space of Hirota polynomials of the mKdV hierarchy. This conjecture is verified by rewriting the generating series of the KdV and mKdV hierarchies using the techniques of symmetric functions.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-024-09493-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-024-09493-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了山田提出的关于 Korteweg-de Vries(KdV)和修正 KdV(mKdV)层次和舒尔 Q 函数的两个猜想。第一个猜想是,佐藤和森在 1980 年定义的函数与以偶数或奇数严格分区为索引的舒尔 Q 函数重合。水川(Mizukawa)、中岛(Nakajima)和山田(Yamada)利用对称函数和利特尔伍德-理查森系数给出了该函数的表达式。我们利用 Lascoux、Leclerc 和 Thibon 的公式证明了这个表达式与舒尔 Q 函数重合。第二个猜想是,以具有奇数部分的严格分区为索引的舒尔 Q 函数构成 KdV 层次的 Hirota 多项式空间的基础,而以具有偶数部分的严格分区为索引的舒尔 Q 函数构成 mKdV 层次的 Hirota 多项式空间的基础。通过使用对称函数技术重写 KdV 和 mKdV 层次的产生序列,验证了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KdV and mKdV Hierarchies and Schur Q-functions

We prove two conjectures on the Korteweg-de Vries (KdV) and modified KdV (mKdV) hierarchies and Schur Q-functions presented by Yamada. The first one is that the functions defined by Sato and Mori in 1980 coincide with Schur Q-functions indexed by even or odd strict partitions. Mizukawa, Nakajima, and Yamada gave an expression for this function using symmetric functions and Littlewood-Richardson coefficients. We prove that this expression coincides with the Schur Q-function by using the formula of Lascoux, Leclerc, and Thibon. The second one is that Schur Q-functions indexed by strict partitions which have odd parts form a basis for the space of Hirota polynomials of the KdV hierarchy, and that Schur Q-functions indexed by strict partitions which have even parts form a basis for the space of Hirota polynomials of the mKdV hierarchy. This conjecture is verified by rewriting the generating series of the KdV and mKdV hierarchies using the techniques of symmetric functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信