{"title":"超声波碳酸氢钠对减盐潮州牛肉丸品质的影响理化和感官特性","authors":"Qian You, Runxiang Mao, Yukun Yuan, Ling Zhang, Xingguo Tian, Xiaoyan Xu","doi":"10.1002/fbe2.12099","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to create a reduced-salt version of Chaozhou beef meatballs (CBMs) by employing ultrasound treatment (0 and 30 min) combined with sodium bicarbonate (0%, 0.15%, and 0.3%). The ultrasound-assisted sodium bicarbonate treatment significantly enhanced pH, salt-soluble protein solubility (SSP), water-holding capacity (WHC), and storage modulus (<i>G</i>′) of the CBMs (<i>p</i> < 0.05). Specifically, after treatment, the increase in pH value promoted the solubilization of SSP, with the content increasing from 28.23% to 56.53%. Moreover, the initial relaxation times (<i>T</i><sub>21</sub> and <i>T</i><sub>22</sub>) were shortened, indicating a decrease in water mobility, as evidenced by an increase in WHC from 85% to 87%. Furthermore, the ultrasound treatment effectively facilitated protein unfolding, increased β-sheet secondary structure content, augmented hydrogen and disulfide bond proportions, and resulted in a denser and more uniform gel structure. Consequently, the hardness of the CBMs was significantly improved (<i>p</i> < 0.05). Sensory evaluation revealed that the treated reduced-salt CBMs were comparable to those produced by conventional methods. Therefore, combining sodium bicarbonate with ultrasound treatment is a viable approach to mitigate the negative effects of reduced salt content and produce high-quality reduced-salt CBMs.</p>","PeriodicalId":100544,"journal":{"name":"Food Bioengineering","volume":"3 3","pages":"301-313"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.12099","citationCount":"0","resultStr":"{\"title\":\"Effect of sodium bicarbonate with ultrasound on reduced-salt Chaozhou beef meatballs quality: Physicochemical and sensory properties\",\"authors\":\"Qian You, Runxiang Mao, Yukun Yuan, Ling Zhang, Xingguo Tian, Xiaoyan Xu\",\"doi\":\"10.1002/fbe2.12099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to create a reduced-salt version of Chaozhou beef meatballs (CBMs) by employing ultrasound treatment (0 and 30 min) combined with sodium bicarbonate (0%, 0.15%, and 0.3%). The ultrasound-assisted sodium bicarbonate treatment significantly enhanced pH, salt-soluble protein solubility (SSP), water-holding capacity (WHC), and storage modulus (<i>G</i>′) of the CBMs (<i>p</i> < 0.05). Specifically, after treatment, the increase in pH value promoted the solubilization of SSP, with the content increasing from 28.23% to 56.53%. Moreover, the initial relaxation times (<i>T</i><sub>21</sub> and <i>T</i><sub>22</sub>) were shortened, indicating a decrease in water mobility, as evidenced by an increase in WHC from 85% to 87%. Furthermore, the ultrasound treatment effectively facilitated protein unfolding, increased β-sheet secondary structure content, augmented hydrogen and disulfide bond proportions, and resulted in a denser and more uniform gel structure. Consequently, the hardness of the CBMs was significantly improved (<i>p</i> < 0.05). Sensory evaluation revealed that the treated reduced-salt CBMs were comparable to those produced by conventional methods. Therefore, combining sodium bicarbonate with ultrasound treatment is a viable approach to mitigate the negative effects of reduced salt content and produce high-quality reduced-salt CBMs.</p>\",\"PeriodicalId\":100544,\"journal\":{\"name\":\"Food Bioengineering\",\"volume\":\"3 3\",\"pages\":\"301-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.12099\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.12099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.12099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of sodium bicarbonate with ultrasound on reduced-salt Chaozhou beef meatballs quality: Physicochemical and sensory properties
This study aimed to create a reduced-salt version of Chaozhou beef meatballs (CBMs) by employing ultrasound treatment (0 and 30 min) combined with sodium bicarbonate (0%, 0.15%, and 0.3%). The ultrasound-assisted sodium bicarbonate treatment significantly enhanced pH, salt-soluble protein solubility (SSP), water-holding capacity (WHC), and storage modulus (G′) of the CBMs (p < 0.05). Specifically, after treatment, the increase in pH value promoted the solubilization of SSP, with the content increasing from 28.23% to 56.53%. Moreover, the initial relaxation times (T21 and T22) were shortened, indicating a decrease in water mobility, as evidenced by an increase in WHC from 85% to 87%. Furthermore, the ultrasound treatment effectively facilitated protein unfolding, increased β-sheet secondary structure content, augmented hydrogen and disulfide bond proportions, and resulted in a denser and more uniform gel structure. Consequently, the hardness of the CBMs was significantly improved (p < 0.05). Sensory evaluation revealed that the treated reduced-salt CBMs were comparable to those produced by conventional methods. Therefore, combining sodium bicarbonate with ultrasound treatment is a viable approach to mitigate the negative effects of reduced salt content and produce high-quality reduced-salt CBMs.