Shuchan Li, Miaoqing An, Yuxuan Zhao, Wenjun Zhao, Pan Li, Bing Du
{"title":"鲟鱼软骨中的免疫调节肽:分离、鉴定、分子对接以及对 RAW264.7 细胞的影响","authors":"Shuchan Li, Miaoqing An, Yuxuan Zhao, Wenjun Zhao, Pan Li, Bing Du","doi":"10.1016/j.fochx.2024.101863","DOIUrl":null,"url":null,"abstract":"<div><div>Sturgeons (<em>Acipenseridae</em>), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2–7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (<em>P</em> < 0.001).Additionally, western blotting confirmed that F2–7 enhances immune response by increasing the expression of P-IKKα/β, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (<em>P</em> < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (−2.75 and −1.64; −6.04 and −4.75 kcal/mol), thus establishing their role as key immune peptides in F2–7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101863"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunomodulatory peptides from sturgeon cartilage: Isolation, identification, molecular docking and effects on RAW264.7 cells\",\"authors\":\"Shuchan Li, Miaoqing An, Yuxuan Zhao, Wenjun Zhao, Pan Li, Bing Du\",\"doi\":\"10.1016/j.fochx.2024.101863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sturgeons (<em>Acipenseridae</em>), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2–7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (<em>P</em> < 0.001).Additionally, western blotting confirmed that F2–7 enhances immune response by increasing the expression of P-IKKα/β, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (<em>P</em> < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (−2.75 and −1.64; −6.04 and −4.75 kcal/mol), thus establishing their role as key immune peptides in F2–7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101863\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259015752400751X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015752400751X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Immunomodulatory peptides from sturgeon cartilage: Isolation, identification, molecular docking and effects on RAW264.7 cells
Sturgeons (Acipenseridae), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2–7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (P < 0.001).Additionally, western blotting confirmed that F2–7 enhances immune response by increasing the expression of P-IKKα/β, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (P < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (−2.75 and −1.64; −6.04 and −4.75 kcal/mol), thus establishing their role as key immune peptides in F2–7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.