卡尔佩列维奇弧的幂及其最稀疏实现矩阵

IF 1 3区 数学 Q1 MATHEMATICS
Priyanka Joshi , Stephen Kirkland , Helena Šmigoc
{"title":"卡尔佩列维奇弧的幂及其最稀疏实现矩阵","authors":"Priyanka Joshi ,&nbsp;Stephen Kirkland ,&nbsp;Helena Šmigoc","doi":"10.1016/j.laa.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>The region in the complex plane containing the eigenvalues of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> stochastic matrices was described by Karpelevič in 1951, and it is since then known as the Karpelevič region. The boundary of the Karpelevič region is the union of arcs called the Karpelevič arcs. We provide a complete characterization of the Karpelevič arcs that are powers of some other Karpelevič arc. Furthermore, we find the necessary and sufficient conditions for a sparsest stochastic matrix associated with the Karpelevič arc of order <em>n</em> to be a power of another stochastic matrix.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 463-503"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powers of Karpelevič arcs and their sparsest realising matrices\",\"authors\":\"Priyanka Joshi ,&nbsp;Stephen Kirkland ,&nbsp;Helena Šmigoc\",\"doi\":\"10.1016/j.laa.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The region in the complex plane containing the eigenvalues of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> stochastic matrices was described by Karpelevič in 1951, and it is since then known as the Karpelevič region. The boundary of the Karpelevič region is the union of arcs called the Karpelevič arcs. We provide a complete characterization of the Karpelevič arcs that are powers of some other Karpelevič arc. Furthermore, we find the necessary and sufficient conditions for a sparsest stochastic matrix associated with the Karpelevič arc of order <em>n</em> to be a power of another stochastic matrix.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"703 \",\"pages\":\"Pages 463-503\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952400380X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952400380X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

卡尔佩列维奇于 1951 年描述了复平面上包含所有 n×n 随机矩阵特征值的区域,自此该区域被称为卡尔佩列维奇区域。卡尔佩列维奇区域的边界是称为卡尔佩列维奇弧的弧的联合。我们提供了卡尔佩列维奇弧的完整特征,这些弧是其他一些卡尔佩列维奇弧的幂。此外,我们还找到了与 n 阶 Karpelevič 弧相关的最稀疏随机矩阵是另一个随机矩阵的幂的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Powers of Karpelevič arcs and their sparsest realising matrices
The region in the complex plane containing the eigenvalues of all n×n stochastic matrices was described by Karpelevič in 1951, and it is since then known as the Karpelevič region. The boundary of the Karpelevič region is the union of arcs called the Karpelevič arcs. We provide a complete characterization of the Karpelevič arcs that are powers of some other Karpelevič arc. Furthermore, we find the necessary and sufficient conditions for a sparsest stochastic matrix associated with the Karpelevič arc of order n to be a power of another stochastic matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信