块三角矩阵的李代数分级计数

IF 1 3区 数学 Q1 MATHEMATICS
Diogo Diniz , Alex Ramos Borges , Eduardo Fonsêca
{"title":"块三角矩阵的李代数分级计数","authors":"Diogo Diniz ,&nbsp;Alex Ramos Borges ,&nbsp;Eduardo Fonsêca","doi":"10.1016/j.laa.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>We study the number of isomorphism classes of gradings on Lie algebras of block-triangular matrices. Let <em>G</em> be a finite abelian group, for <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> we determine the number <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of isomorphism classes of elementary <em>G</em>-gradings on the Lie algebra <span><math><mi>U</mi><mi>T</mi><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup></math></span> of block-triangular matrices over an algebraically closed field of characteristic zero. We study the asymptotic growth of <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> and as a consequence prove that the <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span> determines <em>G</em> up to isomorphism. We also study the asymptotic growth of the number <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of isomorphism classes of <em>G</em>-gradings on <span><math><mi>U</mi><mi>T</mi><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup></math></span> and prove that <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>)</mo><mo>∼</mo><mo>|</mo><mi>G</mi><mo>|</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting gradings on Lie algebras of block-triangular matrices\",\"authors\":\"Diogo Diniz ,&nbsp;Alex Ramos Borges ,&nbsp;Eduardo Fonsêca\",\"doi\":\"10.1016/j.laa.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the number of isomorphism classes of gradings on Lie algebras of block-triangular matrices. Let <em>G</em> be a finite abelian group, for <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> we determine the number <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of isomorphism classes of elementary <em>G</em>-gradings on the Lie algebra <span><math><mi>U</mi><mi>T</mi><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup></math></span> of block-triangular matrices over an algebraically closed field of characteristic zero. We study the asymptotic growth of <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> and as a consequence prove that the <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span> determines <em>G</em> up to isomorphism. We also study the asymptotic growth of the number <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of isomorphism classes of <em>G</em>-gradings on <span><math><mi>U</mi><mi>T</mi><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup></math></span> and prove that <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>)</mo><mo>∼</mo><mo>|</mo><mi>G</mi><mo>|</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003811\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003811","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了块三角矩阵的李代数上等级的同构类数。让 G 是一个有限无性群,对于 m∈Ns ,我们确定了在特征为零的代数闭域上的块三角形矩阵的李代数 UT(m)(-) 上的基本 G 级数的同构类数 E(-)(G,m)。我们研究了 E(-)(G,m)的渐近增长,并由此证明 E(-)(G⋅)决定 G 直到同构。我们还研究了UT(m)(-)上 G-gradings 的同构类数 N(-)(G,m)的渐近增长,并证明了 N(-)(G,m))∼|G|E(-)(G,m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting gradings on Lie algebras of block-triangular matrices
We study the number of isomorphism classes of gradings on Lie algebras of block-triangular matrices. Let G be a finite abelian group, for mNs we determine the number E()(G,m) of isomorphism classes of elementary G-gradings on the Lie algebra UT(m)() of block-triangular matrices over an algebraically closed field of characteristic zero. We study the asymptotic growth of E()(G,m) and as a consequence prove that the E()(G,) determines G up to isomorphism. We also study the asymptotic growth of the number N()(G,m) of isomorphism classes of G-gradings on UT(m)() and prove that N()(G,m))|G|E()(G,m).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信