实半简单 Zm 级列的半简单元素和小韦尔群

IF 1 3区 数学 Q1 MATHEMATICS
Willem de Graaf , Hông Vân Lê
{"title":"实半简单 Zm 级列的半简单元素和小韦尔群","authors":"Willem de Graaf ,&nbsp;Hông Vân Lê","doi":"10.1016/j.laa.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the semisimple orbits of a Vinberg <em>θ</em>-representation. First we take the complex numbers as base field. By a case by case analysis we show a technical result stating the equality of two sets of hyperplanes, one corresponding to the restricted roots of a Cartan subspace, the other corresponding to the complex reflections in the (little) Weyl group. The semisimple orbits have representatives in a finite number of sets that correspond to reflection subgroups of the (little) Weyl group. One of the consequences of our technical result is that the elements in a fixed such set all have the same stabilizer in the acting group. Secondly we study what happens when the base field is the real numbers. We look at Cartan subspaces and show that the real Cartan subspaces can be classified by the first Galois cohomology set of the normalizer of a fixed real Cartan subspace. In the real case the orbits can be classified using Galois cohomology. However, in order for that to work we need to know which orbits have a real representative. We show a theorem that characterizes the orbits of homogeneous semisimple elements that do have such a real representative. This closely follows and generalizes a theorem from <span><span>[6]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisimple elements and the little Weyl group of real semisimple Zm-graded Lie algebras\",\"authors\":\"Willem de Graaf ,&nbsp;Hông Vân Lê\",\"doi\":\"10.1016/j.laa.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the semisimple orbits of a Vinberg <em>θ</em>-representation. First we take the complex numbers as base field. By a case by case analysis we show a technical result stating the equality of two sets of hyperplanes, one corresponding to the restricted roots of a Cartan subspace, the other corresponding to the complex reflections in the (little) Weyl group. The semisimple orbits have representatives in a finite number of sets that correspond to reflection subgroups of the (little) Weyl group. One of the consequences of our technical result is that the elements in a fixed such set all have the same stabilizer in the acting group. Secondly we study what happens when the base field is the real numbers. We look at Cartan subspaces and show that the real Cartan subspaces can be classified by the first Galois cohomology set of the normalizer of a fixed real Cartan subspace. In the real case the orbits can be classified using Galois cohomology. However, in order for that to work we need to know which orbits have a real representative. We show a theorem that characterizes the orbits of homogeneous semisimple elements that do have such a real representative. This closely follows and generalizes a theorem from <span><span>[6]</span></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952400377X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952400377X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑文伯格 θ 表示的半简单轨道。首先,我们以复数为基域。通过逐例分析,我们展示了一个技术结果,说明两组超平面是相等的,一组对应于 Cartan 子空间的受限根,另一组对应于(小)Weyl 群中的复反射。半简单轨道在对应于(小)韦尔群反射子群的有限数量集合中具有代表。我们的技术结果之一是,固定的此类集合中的元素在作用群中都有相同的稳定子。其次,我们研究了当基域为实数时会发生什么。我们研究了笛卡尔子空间,并证明实笛卡尔子空间可以通过固定实笛卡尔子空间的归一化的第一个伽罗瓦同调集来分类。在实情形中,轨道可以用伽罗瓦同调来分类。然而,要做到这一点,我们需要知道哪些轨道有实数代表。我们展示了一个定理,它描述了具有实代表的同质半简单元素的轨道。这紧跟并推广了 [6] 中的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semisimple elements and the little Weyl group of real semisimple Zm-graded Lie algebras
We consider the semisimple orbits of a Vinberg θ-representation. First we take the complex numbers as base field. By a case by case analysis we show a technical result stating the equality of two sets of hyperplanes, one corresponding to the restricted roots of a Cartan subspace, the other corresponding to the complex reflections in the (little) Weyl group. The semisimple orbits have representatives in a finite number of sets that correspond to reflection subgroups of the (little) Weyl group. One of the consequences of our technical result is that the elements in a fixed such set all have the same stabilizer in the acting group. Secondly we study what happens when the base field is the real numbers. We look at Cartan subspaces and show that the real Cartan subspaces can be classified by the first Galois cohomology set of the normalizer of a fixed real Cartan subspace. In the real case the orbits can be classified using Galois cohomology. However, in order for that to work we need to know which orbits have a real representative. We show a theorem that characterizes the orbits of homogeneous semisimple elements that do have such a real representative. This closely follows and generalizes a theorem from [6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信