探究脉冲激光沉积产生的钴铁氧体纳米结构的形态变化对其电化学特性的影响

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Rodrigo D. Santos , Natasha M. Suguihiro , Victor M. Paiva , Eliane D’Elia , Braulio S. Archanjo , Wallace C. Nunes
{"title":"探究脉冲激光沉积产生的钴铁氧体纳米结构的形态变化对其电化学特性的影响","authors":"Rodrigo D. Santos ,&nbsp;Natasha M. Suguihiro ,&nbsp;Victor M. Paiva ,&nbsp;Eliane D’Elia ,&nbsp;Braulio S. Archanjo ,&nbsp;Wallace C. Nunes","doi":"10.1016/j.tsf.2024.140538","DOIUrl":null,"url":null,"abstract":"<div><div>A higher surface-to-volume ratio typically enhances capacitance in supercapacitor electrodes. However, excessive porosity can increase electrical resistance, counteracting this benefit. This study optimized the compaction level of CFO (Cobalt Ferrite Oxide) nanoparticles for enhanced supercapacitor performance. Nanoparticle-assembled CFO films with varying compaction were produced via pulsed laser deposition while maintaining consistent crystal structure and particle size. Characterization using electron microscopy and electrochemical techniques revealed a strong correlation between compaction and capacitance. All CFO nanoparticle-assembled films exhibited superior pseudocapacitive behavior compared to CFO thin films, with the most compacted nanoparticle-assembled film achieving a high areal capacitance of 6 mF cm<sup>−2</sup>.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"807 ","pages":"Article 140538"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the influence of morphological variations on the electrochemical properties of cobalt ferrite nanostructures produced by pulsed laser deposition\",\"authors\":\"Rodrigo D. Santos ,&nbsp;Natasha M. Suguihiro ,&nbsp;Victor M. Paiva ,&nbsp;Eliane D’Elia ,&nbsp;Braulio S. Archanjo ,&nbsp;Wallace C. Nunes\",\"doi\":\"10.1016/j.tsf.2024.140538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A higher surface-to-volume ratio typically enhances capacitance in supercapacitor electrodes. However, excessive porosity can increase electrical resistance, counteracting this benefit. This study optimized the compaction level of CFO (Cobalt Ferrite Oxide) nanoparticles for enhanced supercapacitor performance. Nanoparticle-assembled CFO films with varying compaction were produced via pulsed laser deposition while maintaining consistent crystal structure and particle size. Characterization using electron microscopy and electrochemical techniques revealed a strong correlation between compaction and capacitance. All CFO nanoparticle-assembled films exhibited superior pseudocapacitive behavior compared to CFO thin films, with the most compacted nanoparticle-assembled film achieving a high areal capacitance of 6 mF cm<sup>−2</sup>.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"807 \",\"pages\":\"Article 140538\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609024003390\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024003390","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

较高的表面体积比通常会提高超级电容器电极的电容。然而,过高的孔隙率会增加电阻,从而抵消这一优势。本研究优化了 CFO(铁氧体钴)纳米粒子的压实度,以提高超级电容器的性能。在保持晶体结构和颗粒尺寸一致的前提下,通过脉冲激光沉积技术制备了不同压实度的纳米颗粒组装 CFO 薄膜。利用电子显微镜和电化学技术进行的表征显示,压实度与电容之间存在很强的相关性。与 CFO 薄膜相比,所有 CFO 纳米粒子组装薄膜都表现出更优越的伪电容行为,其中压实度最高的纳米粒子组装薄膜达到了 6 mF cm-2 的高面积电容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing the influence of morphological variations on the electrochemical properties of cobalt ferrite nanostructures produced by pulsed laser deposition
A higher surface-to-volume ratio typically enhances capacitance in supercapacitor electrodes. However, excessive porosity can increase electrical resistance, counteracting this benefit. This study optimized the compaction level of CFO (Cobalt Ferrite Oxide) nanoparticles for enhanced supercapacitor performance. Nanoparticle-assembled CFO films with varying compaction were produced via pulsed laser deposition while maintaining consistent crystal structure and particle size. Characterization using electron microscopy and electrochemical techniques revealed a strong correlation between compaction and capacitance. All CFO nanoparticle-assembled films exhibited superior pseudocapacitive behavior compared to CFO thin films, with the most compacted nanoparticle-assembled film achieving a high areal capacitance of 6 mF cm−2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信