考虑组件故障相关性的列车控制车载系统弹性评估:基于 Apriori-Multi Layer-Copula Bayesian Network 模型

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
{"title":"考虑组件故障相关性的列车控制车载系统弹性评估:基于 Apriori-Multi Layer-Copula Bayesian Network 模型","authors":"","doi":"10.1016/j.ress.2024.110514","DOIUrl":null,"url":null,"abstract":"<div><div>The failure of complex system components is an important factor affecting system resilience, and it is not only affected by their own basic life parameters, but may also be affected by the failure of other components. In order to investigate the impact of component failure correlations on the resilience evaluation of Train Control on Board System (TCOBS), we propose the Apriori-Multi Layer-Copula Bayesian Network (AMLCBN) model. Firstly, the definition and evaluation function of TCOBS component resilience are provided. Then, build a TCOBS Bayesian Network and perform hierarchical processing on the network to clarify the position of Copula functions in the Bayesian Network. The Copula function is used to evaluate the correlations among component failures, and the Copula Bayesian Network is used to infer TCOBS resilience. We use Apriori to calculate the correlation coefficient matrix in the Copula function. Finally, a case study is conducted by taking CTCS-3OBS as an example, the results show that among the components of TCOBS, BTM Ant has low resilience and high importance. Considering the correlation among component failures, the TCOBS resilience evaluation results will increase, and those components with higher importance will become more important, while those with lower importance will become less important.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience evaluation of train control on-board system considering component failure correlations: Based on Apriori-Multi Layer-Copula Bayesian Network model\",\"authors\":\"\",\"doi\":\"10.1016/j.ress.2024.110514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The failure of complex system components is an important factor affecting system resilience, and it is not only affected by their own basic life parameters, but may also be affected by the failure of other components. In order to investigate the impact of component failure correlations on the resilience evaluation of Train Control on Board System (TCOBS), we propose the Apriori-Multi Layer-Copula Bayesian Network (AMLCBN) model. Firstly, the definition and evaluation function of TCOBS component resilience are provided. Then, build a TCOBS Bayesian Network and perform hierarchical processing on the network to clarify the position of Copula functions in the Bayesian Network. The Copula function is used to evaluate the correlations among component failures, and the Copula Bayesian Network is used to infer TCOBS resilience. We use Apriori to calculate the correlation coefficient matrix in the Copula function. Finally, a case study is conducted by taking CTCS-3OBS as an example, the results show that among the components of TCOBS, BTM Ant has low resilience and high importance. Considering the correlation among component failures, the TCOBS resilience evaluation results will increase, and those components with higher importance will become more important, while those with lower importance will become less important.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024005866\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005866","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

复杂系统组件失效是影响系统弹性的一个重要因素,它不仅受自身基本寿命参数的影响,还可能受到其他组件失效的影响。为了研究组件失效相关性对列车控制板系统(TCOBS)弹性评估的影响,我们提出了 Apriori-Multi Layer-Copula Bayesian Network(AMLCBN)模型。首先,给出了 TCOBS 组件弹性的定义和评估函数。然后,构建 TCOBS 贝叶斯网络,并对网络进行分层处理,以明确 Copula 函数在贝叶斯网络中的位置。Copula 函数用于评估组件故障之间的相关性,Copula 贝叶斯网络用于推断 TCOBS 的弹性。我们使用 Apriori 计算 Copula 函数中的相关系数矩阵。最后,我们以 CTCS-3OBS 为例进行了案例研究,结果表明,在 TCOBS 的各组件中,BTM Ant 的弹性较低,重要性较高。考虑到组件故障之间的相关性,TCOBS 的弹性评价结果将增加,重要性较高的组件将变得更加重要,而重要性较低的组件将变得不那么重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilience evaluation of train control on-board system considering component failure correlations: Based on Apriori-Multi Layer-Copula Bayesian Network model
The failure of complex system components is an important factor affecting system resilience, and it is not only affected by their own basic life parameters, but may also be affected by the failure of other components. In order to investigate the impact of component failure correlations on the resilience evaluation of Train Control on Board System (TCOBS), we propose the Apriori-Multi Layer-Copula Bayesian Network (AMLCBN) model. Firstly, the definition and evaluation function of TCOBS component resilience are provided. Then, build a TCOBS Bayesian Network and perform hierarchical processing on the network to clarify the position of Copula functions in the Bayesian Network. The Copula function is used to evaluate the correlations among component failures, and the Copula Bayesian Network is used to infer TCOBS resilience. We use Apriori to calculate the correlation coefficient matrix in the Copula function. Finally, a case study is conducted by taking CTCS-3OBS as an example, the results show that among the components of TCOBS, BTM Ant has low resilience and high importance. Considering the correlation among component failures, the TCOBS resilience evaluation results will increase, and those components with higher importance will become more important, while those with lower importance will become less important.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信