改进的淹没式滑坡两相两点 SPH 模型

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guibin Zhang , Danling Tang , Hongjie Wen , Jianyun Chen , Pengfei Wu
{"title":"改进的淹没式滑坡两相两点 SPH 模型","authors":"Guibin Zhang ,&nbsp;Danling Tang ,&nbsp;Hongjie Wen ,&nbsp;Jianyun Chen ,&nbsp;Pengfei Wu","doi":"10.1016/j.compgeo.2024.106802","DOIUrl":null,"url":null,"abstract":"<div><div>This research proposes an improved two phases-two points SPH model designed to simulate interactions between water and soil, particularly suitable for scenarios such as submerged landslides. This model treats water as a weakly compressible Newtonian fluid and soil as a cohesive-frictional material following an elastoplastic constitutive law, utilizing two layers of SPH particles to separately represent these two phases. An adaptive drag force formula is proposed that automatically switches between linear and nonlinear seepage modes based on the motion state of the porewater. Additionally, to improve the precision and stability of the model, a modified solid boundary condition and a method for calculating soil volume fraction are proposed, along with an SPH discretization formula that incorporates the effects of the volume fraction in a more effective way. The reliability of the improved two phases-two points SPH model is initially verified through two cases: a dry granular landslide and a submerged soil mass subjected to gravitational loading. Then, the effectiveness of the proposed improvement methods is further tested and validated through three submerged landslide cases with different grain diameters, demonstrating the applicability of the current model in simulating submerged landslides and its superiority in accuracy and stability compared to previous models.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"176 ","pages":"Article 106802"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved two phases-two points SPH model for submerged landslide\",\"authors\":\"Guibin Zhang ,&nbsp;Danling Tang ,&nbsp;Hongjie Wen ,&nbsp;Jianyun Chen ,&nbsp;Pengfei Wu\",\"doi\":\"10.1016/j.compgeo.2024.106802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research proposes an improved two phases-two points SPH model designed to simulate interactions between water and soil, particularly suitable for scenarios such as submerged landslides. This model treats water as a weakly compressible Newtonian fluid and soil as a cohesive-frictional material following an elastoplastic constitutive law, utilizing two layers of SPH particles to separately represent these two phases. An adaptive drag force formula is proposed that automatically switches between linear and nonlinear seepage modes based on the motion state of the porewater. Additionally, to improve the precision and stability of the model, a modified solid boundary condition and a method for calculating soil volume fraction are proposed, along with an SPH discretization formula that incorporates the effects of the volume fraction in a more effective way. The reliability of the improved two phases-two points SPH model is initially verified through two cases: a dry granular landslide and a submerged soil mass subjected to gravitational loading. Then, the effectiveness of the proposed improvement methods is further tested and validated through three submerged landslide cases with different grain diameters, demonstrating the applicability of the current model in simulating submerged landslides and its superiority in accuracy and stability compared to previous models.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"176 \",\"pages\":\"Article 106802\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X24007419\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007419","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种改进的两相两点 SPH 模型,旨在模拟水与土壤之间的相互作用,尤其适用于淹没式滑坡等情况。该模型将水视为弱可压缩牛顿流体,将土视为内聚摩擦材料,遵循弹塑性结构定律,利用两层 SPH 粒子分别代表这两个阶段。提出的自适应阻力公式可根据孔隙水的运动状态在线性和非线性渗流模式之间自动切换。此外,为了提高模型的精度和稳定性,还提出了修改后的固体边界条件和计算土壤体积分数的方法,以及更有效地考虑体积分数影响的 SPH 离散化公式。通过两种情况初步验证了改进后的两相两点 SPH 模型的可靠性:干粒状滑坡和承受重力荷载的水下土体。然后,通过三个不同颗粒直径的淹没式滑坡案例进一步测试和验证了所提改进方法的有效性,证明了当前模型在模拟淹没式滑坡中的适用性,以及与之前模型相比在精度和稳定性方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved two phases-two points SPH model for submerged landslide
This research proposes an improved two phases-two points SPH model designed to simulate interactions between water and soil, particularly suitable for scenarios such as submerged landslides. This model treats water as a weakly compressible Newtonian fluid and soil as a cohesive-frictional material following an elastoplastic constitutive law, utilizing two layers of SPH particles to separately represent these two phases. An adaptive drag force formula is proposed that automatically switches between linear and nonlinear seepage modes based on the motion state of the porewater. Additionally, to improve the precision and stability of the model, a modified solid boundary condition and a method for calculating soil volume fraction are proposed, along with an SPH discretization formula that incorporates the effects of the volume fraction in a more effective way. The reliability of the improved two phases-two points SPH model is initially verified through two cases: a dry granular landslide and a submerged soil mass subjected to gravitational loading. Then, the effectiveness of the proposed improvement methods is further tested and validated through three submerged landslide cases with different grain diameters, demonstrating the applicability of the current model in simulating submerged landslides and its superiority in accuracy and stability compared to previous models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信