外源性褪黑激素和血清素可提高番茄幼苗对硼毒的耐受性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ufuk Celikkol Akcay, Esra Acar
{"title":"外源性褪黑激素和血清素可提高番茄幼苗对硼毒的耐受性","authors":"Ufuk Celikkol Akcay,&nbsp;Esra Acar","doi":"10.1007/s11738-024-03712-1","DOIUrl":null,"url":null,"abstract":"<div><p>Boron toxicity is an abiotic stress restricting agricultural production in arid and semiarid parts of the world. This study aimed to investigate the effects of serotonin and melatonin on tomato seedlings under short (5 days) and long-term (8 days) boron toxicity applied as 7.5 mM boric acid in the nutrient solution. Shoot and root lengths, dry weights and water contents, ion leakage levels, malondialdehyde, proline and relative water contents were used as morphological and physiological stress indicators. Expression levels of the enzymatic antioxidative defense genes, <i>FeSOD</i>, <i>CAT2</i>, <i>GR1</i>, <i>APX1</i>, <i>P5CS</i>, ethylene biosynthesis gene <i>ACS2</i>, <i>DEADBOX</i> RNA helicase, and two protein kinase genes <i>CPK2 </i>and <i>MPK3 </i>were also investigated. Melatonin application (10 µM) completely reversed necrotic and chlorotic lesions on leaves, while serotonin application (5 µM) partly ameliorated the visible boron toxicity symptoms. Both indoleamines reduced membrane damage and increased osmoprotectant proline levels under long-term boron toxicity. Exogenous melatonin and serotonin applications also reduced <i>ACS2</i> gene expression while increasing the transcript levels of <i>CPK2</i>, as well as enzymatic antioxidative defense system genes under long-term boron toxicity. The study showed that both indoleamine compounds interacted with early and late stress responses and successfully mitigated boron toxicity stress in tomato.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous melatonin and serotonin improve boron toxicity tolerance in tomato seedlings\",\"authors\":\"Ufuk Celikkol Akcay,&nbsp;Esra Acar\",\"doi\":\"10.1007/s11738-024-03712-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boron toxicity is an abiotic stress restricting agricultural production in arid and semiarid parts of the world. This study aimed to investigate the effects of serotonin and melatonin on tomato seedlings under short (5 days) and long-term (8 days) boron toxicity applied as 7.5 mM boric acid in the nutrient solution. Shoot and root lengths, dry weights and water contents, ion leakage levels, malondialdehyde, proline and relative water contents were used as morphological and physiological stress indicators. Expression levels of the enzymatic antioxidative defense genes, <i>FeSOD</i>, <i>CAT2</i>, <i>GR1</i>, <i>APX1</i>, <i>P5CS</i>, ethylene biosynthesis gene <i>ACS2</i>, <i>DEADBOX</i> RNA helicase, and two protein kinase genes <i>CPK2 </i>and <i>MPK3 </i>were also investigated. Melatonin application (10 µM) completely reversed necrotic and chlorotic lesions on leaves, while serotonin application (5 µM) partly ameliorated the visible boron toxicity symptoms. Both indoleamines reduced membrane damage and increased osmoprotectant proline levels under long-term boron toxicity. Exogenous melatonin and serotonin applications also reduced <i>ACS2</i> gene expression while increasing the transcript levels of <i>CPK2</i>, as well as enzymatic antioxidative defense system genes under long-term boron toxicity. The study showed that both indoleamine compounds interacted with early and late stress responses and successfully mitigated boron toxicity stress in tomato.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-024-03712-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03712-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

硼毒性是制约世界干旱和半干旱地区农业生产的一种非生物胁迫。本研究旨在探讨在营养液中添加 7.5 毫摩尔硼酸的短期(5 天)和长期(8 天)硼毒害条件下,血清素和褪黑激素对番茄幼苗的影响。茎和根的长度、干重和含水量、离子泄漏水平、丙二醛、脯氨酸和相对含水量被用作形态和生理胁迫指标。此外,还研究了抗氧化防御酶基因 FeSOD、CAT2、GR1、APX1、P5CS、乙烯生物合成基因 ACS2、DEADBOX RNA 螺旋酶以及两种蛋白激酶基因 CPK2 和 MPK3 的表达水平。施用褪黑激素(10 µM)可完全逆转叶片上的坏死和萎黄病变,而施用羟色胺(5 µM)可部分改善可见的硼毒性症状。这两种吲哚胺都能减少膜损伤,并提高长期硼毒性下的渗透保护剂脯氨酸水平。外源性褪黑素和血清素的应用也降低了硼长期毒性下 ACS2 基因的表达,同时提高了 CPK2 以及酶抗氧化防御系统基因的转录水平。研究表明,这两种吲哚胺化合物与早期和晚期应激反应相互作用,成功缓解了番茄的硼毒应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exogenous melatonin and serotonin improve boron toxicity tolerance in tomato seedlings

Exogenous melatonin and serotonin improve boron toxicity tolerance in tomato seedlings

Boron toxicity is an abiotic stress restricting agricultural production in arid and semiarid parts of the world. This study aimed to investigate the effects of serotonin and melatonin on tomato seedlings under short (5 days) and long-term (8 days) boron toxicity applied as 7.5 mM boric acid in the nutrient solution. Shoot and root lengths, dry weights and water contents, ion leakage levels, malondialdehyde, proline and relative water contents were used as morphological and physiological stress indicators. Expression levels of the enzymatic antioxidative defense genes, FeSOD, CAT2, GR1, APX1, P5CS, ethylene biosynthesis gene ACS2, DEADBOX RNA helicase, and two protein kinase genes CPK2 and MPK3 were also investigated. Melatonin application (10 µM) completely reversed necrotic and chlorotic lesions on leaves, while serotonin application (5 µM) partly ameliorated the visible boron toxicity symptoms. Both indoleamines reduced membrane damage and increased osmoprotectant proline levels under long-term boron toxicity. Exogenous melatonin and serotonin applications also reduced ACS2 gene expression while increasing the transcript levels of CPK2, as well as enzymatic antioxidative defense system genes under long-term boron toxicity. The study showed that both indoleamine compounds interacted with early and late stress responses and successfully mitigated boron toxicity stress in tomato.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信