{"title":"近红外区域的介观完全可印刷过氧化物发光二极管†。","authors":"Maayan Sohmer-Tal and Lioz Etgar","doi":"10.1039/D4TC02355B","DOIUrl":null,"url":null,"abstract":"<p >This study presents, for the first time, a fully printable mesoporous indium tin oxide (ITO) perovskite light-emitting diode (ITO-PeLED). The structure comprises triple-oxide screen-printed mesoporous layers, with the perovskite filling the pores of the inorganic framework. These ITO-PeLEDs emit in the near-infrared region achieving an external quantum efficiency (EQE) of 22.07% and a peak radiance of approximately 1000 W sr<small><sup>−1</sup></small> m<small><sup>−2</sup></small>. Additionally, they can function as solar cells, exhibiting over 10% efficiency, where the perovskite serves as both a light harvester and a hole conductor simultaneously. Further analysis reveals that the dominant recombination mechanism in these ITO-PeLEDs is Shockley–Read–Hall recombination in the bulk, while a significant energy mismatch between the layers leads to considerable <em>V</em><small><sub>oc</sub></small> loss, impacting device functionality. Impedance spectroscopy was employed to investigate the electroluminescence process across different voltage ranges, revealing a correlation between ion current and electroluminescence and emphasizing the critical role of ion migration in radiative recombination. This phenomenon is supported by the improved performance of ITO-PeLEDs observed during stability measurements conducted over multiple cycles. This work demonstrates efficient and fully printable PeLEDs that are suitable for large-scale production.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 39","pages":" 16067-16075"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscopic fully printable perovskite light-emitting diodes in the near infra-red region†\",\"authors\":\"Maayan Sohmer-Tal and Lioz Etgar\",\"doi\":\"10.1039/D4TC02355B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents, for the first time, a fully printable mesoporous indium tin oxide (ITO) perovskite light-emitting diode (ITO-PeLED). The structure comprises triple-oxide screen-printed mesoporous layers, with the perovskite filling the pores of the inorganic framework. These ITO-PeLEDs emit in the near-infrared region achieving an external quantum efficiency (EQE) of 22.07% and a peak radiance of approximately 1000 W sr<small><sup>−1</sup></small> m<small><sup>−2</sup></small>. Additionally, they can function as solar cells, exhibiting over 10% efficiency, where the perovskite serves as both a light harvester and a hole conductor simultaneously. Further analysis reveals that the dominant recombination mechanism in these ITO-PeLEDs is Shockley–Read–Hall recombination in the bulk, while a significant energy mismatch between the layers leads to considerable <em>V</em><small><sub>oc</sub></small> loss, impacting device functionality. Impedance spectroscopy was employed to investigate the electroluminescence process across different voltage ranges, revealing a correlation between ion current and electroluminescence and emphasizing the critical role of ion migration in radiative recombination. This phenomenon is supported by the improved performance of ITO-PeLEDs observed during stability measurements conducted over multiple cycles. This work demonstrates efficient and fully printable PeLEDs that are suitable for large-scale production.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 39\",\"pages\":\" 16067-16075\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02355b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02355b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mesoscopic fully printable perovskite light-emitting diodes in the near infra-red region†
This study presents, for the first time, a fully printable mesoporous indium tin oxide (ITO) perovskite light-emitting diode (ITO-PeLED). The structure comprises triple-oxide screen-printed mesoporous layers, with the perovskite filling the pores of the inorganic framework. These ITO-PeLEDs emit in the near-infrared region achieving an external quantum efficiency (EQE) of 22.07% and a peak radiance of approximately 1000 W sr−1 m−2. Additionally, they can function as solar cells, exhibiting over 10% efficiency, where the perovskite serves as both a light harvester and a hole conductor simultaneously. Further analysis reveals that the dominant recombination mechanism in these ITO-PeLEDs is Shockley–Read–Hall recombination in the bulk, while a significant energy mismatch between the layers leads to considerable Voc loss, impacting device functionality. Impedance spectroscopy was employed to investigate the electroluminescence process across different voltage ranges, revealing a correlation between ion current and electroluminescence and emphasizing the critical role of ion migration in radiative recombination. This phenomenon is supported by the improved performance of ITO-PeLEDs observed during stability measurements conducted over multiple cycles. This work demonstrates efficient and fully printable PeLEDs that are suitable for large-scale production.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors