Andrea Caratti, Francesco Ferrero, Ernesto Tabacco, Fabio Gerbaldo, Erica Liberto, Giorgio Borreani, Chiara Cordero
{"title":"将二维色谱指纹图谱转化为定量挥发物组学:揭示玉米青贮挥发物的成分变化,发现可靠的标记物","authors":"Andrea Caratti, Francesco Ferrero, Ernesto Tabacco, Fabio Gerbaldo, Erica Liberto, Giorgio Borreani, Chiara Cordero","doi":"10.1021/acs.jafc.4c05877","DOIUrl":null,"url":null,"abstract":"This study examines the complex volatilome of maize silage, both with and without commercial heterolactic strain inoculation, conserved for 100 days, using quantitative volatilomics. Chemical classes linked to microbial metabolism were analyzed across a concentration range from 10 μg g<sup>–1</sup> to 1 ng g<sup>–1</sup>. A reference method using comprehensive two-dimensional gas chromatography (GC × GC) and time-of-flight mass spectrometry (TOF MS) with loop-type thermal modulation (TM) was translated to a differential-flow modulation (FM) platform with parallel MS and flame ionization detector (FID) detection. With translation, the original method’s analyte elution order and resolution are preserved. The new method allowed for accurate quantification using multiple headspace solid-phase microextraction (MHS-SPME) and FID-predicted relative response factors (RRFs). Both methods showed comparable discriminatory power with FM GC × GC-MS/FID achieving satisfactory quantification accuracy without external calibration. Analysis of 98 volatiles provided insights into silage fermentation, supporting marker discovery and correlations with silage quality and stability.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"26 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translating 2D-Chromatographic Fingerprinting to Quantitative Volatilomics: Unrevealing Compositional Changes in Maize Silage Volatilome for Robust Marker Discovery\",\"authors\":\"Andrea Caratti, Francesco Ferrero, Ernesto Tabacco, Fabio Gerbaldo, Erica Liberto, Giorgio Borreani, Chiara Cordero\",\"doi\":\"10.1021/acs.jafc.4c05877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the complex volatilome of maize silage, both with and without commercial heterolactic strain inoculation, conserved for 100 days, using quantitative volatilomics. Chemical classes linked to microbial metabolism were analyzed across a concentration range from 10 μg g<sup>–1</sup> to 1 ng g<sup>–1</sup>. A reference method using comprehensive two-dimensional gas chromatography (GC × GC) and time-of-flight mass spectrometry (TOF MS) with loop-type thermal modulation (TM) was translated to a differential-flow modulation (FM) platform with parallel MS and flame ionization detector (FID) detection. With translation, the original method’s analyte elution order and resolution are preserved. The new method allowed for accurate quantification using multiple headspace solid-phase microextraction (MHS-SPME) and FID-predicted relative response factors (RRFs). Both methods showed comparable discriminatory power with FM GC × GC-MS/FID achieving satisfactory quantification accuracy without external calibration. Analysis of 98 volatiles provided insights into silage fermentation, supporting marker discovery and correlations with silage quality and stability.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c05877\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c05877","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Translating 2D-Chromatographic Fingerprinting to Quantitative Volatilomics: Unrevealing Compositional Changes in Maize Silage Volatilome for Robust Marker Discovery
This study examines the complex volatilome of maize silage, both with and without commercial heterolactic strain inoculation, conserved for 100 days, using quantitative volatilomics. Chemical classes linked to microbial metabolism were analyzed across a concentration range from 10 μg g–1 to 1 ng g–1. A reference method using comprehensive two-dimensional gas chromatography (GC × GC) and time-of-flight mass spectrometry (TOF MS) with loop-type thermal modulation (TM) was translated to a differential-flow modulation (FM) platform with parallel MS and flame ionization detector (FID) detection. With translation, the original method’s analyte elution order and resolution are preserved. The new method allowed for accurate quantification using multiple headspace solid-phase microextraction (MHS-SPME) and FID-predicted relative response factors (RRFs). Both methods showed comparable discriminatory power with FM GC × GC-MS/FID achieving satisfactory quantification accuracy without external calibration. Analysis of 98 volatiles provided insights into silage fermentation, supporting marker discovery and correlations with silage quality and stability.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.