Jasmine F. Millman , Alina Kondrashina , Clodagh Walsh , Kizkitza Busca , Aneesha Karawugodage , Julia Park , Sameera Sirisena , Francois-Pierre Martin , Valeria D. Felice , Jonathan A. Lane
{"title":"通过肠道-皮肤轴,将生物制剂作为针对皮肤老化迹象的新型疗法。","authors":"Jasmine F. Millman , Alina Kondrashina , Clodagh Walsh , Kizkitza Busca , Aneesha Karawugodage , Julia Park , Sameera Sirisena , Francois-Pierre Martin , Valeria D. Felice , Jonathan A. Lane","doi":"10.1016/j.arr.2024.102518","DOIUrl":null,"url":null,"abstract":"<div><div>Skin ageing is a phenomenon resulting from the aggregative changes to skin structure and function and is clinically manifested by physical features such as wrinkles, hyperpigmentation, elastosis, telangiectasia, and deterioration of skin barrier integrity. One of the main drivers of skin ageing, UV radiation, negatively influences the homeostasis of cells and tissues comprising the skin by triggering production of immune-mediated reactive oxygen species (ROS) and pro-inflammatory cytokines, as well as a various hormones and neuropeptides. Interestingly, an established link between the gut and the skin coined the ‘gut-skin axis’ has been demonstrated, with dysbiosis and gut barrier dysfunction frequently observed in certain inflammatory skin conditions and more recently, implicated in skin ageing. Therapeutic use of ‘biotics’ including prebiotics, probiotics, postbiotics, and synbiotics, which modulate the gut microbiota and production of microbially associated metabolites, influence the activity of the gut mucosal and immune systems and are showing promise as key candidates in addressing signs of skin ageing. In this review we aim to focus on the structure and function of the gut-skin axis and showcase the recent <em>in-vitro</em> and clinical evidence demonstrating the beneficial effects of select biotics in targeting signs of skin ageing and discuss the proposed mechanisms mediated via the gut-skin axis underpinning these effects.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"102 ","pages":"Article 102518"},"PeriodicalIF":12.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotics as novel therapeutics in targeting signs of skin ageing via the gut-skin axis\",\"authors\":\"Jasmine F. Millman , Alina Kondrashina , Clodagh Walsh , Kizkitza Busca , Aneesha Karawugodage , Julia Park , Sameera Sirisena , Francois-Pierre Martin , Valeria D. Felice , Jonathan A. Lane\",\"doi\":\"10.1016/j.arr.2024.102518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Skin ageing is a phenomenon resulting from the aggregative changes to skin structure and function and is clinically manifested by physical features such as wrinkles, hyperpigmentation, elastosis, telangiectasia, and deterioration of skin barrier integrity. One of the main drivers of skin ageing, UV radiation, negatively influences the homeostasis of cells and tissues comprising the skin by triggering production of immune-mediated reactive oxygen species (ROS) and pro-inflammatory cytokines, as well as a various hormones and neuropeptides. Interestingly, an established link between the gut and the skin coined the ‘gut-skin axis’ has been demonstrated, with dysbiosis and gut barrier dysfunction frequently observed in certain inflammatory skin conditions and more recently, implicated in skin ageing. Therapeutic use of ‘biotics’ including prebiotics, probiotics, postbiotics, and synbiotics, which modulate the gut microbiota and production of microbially associated metabolites, influence the activity of the gut mucosal and immune systems and are showing promise as key candidates in addressing signs of skin ageing. In this review we aim to focus on the structure and function of the gut-skin axis and showcase the recent <em>in-vitro</em> and clinical evidence demonstrating the beneficial effects of select biotics in targeting signs of skin ageing and discuss the proposed mechanisms mediated via the gut-skin axis underpinning these effects.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"102 \",\"pages\":\"Article 102518\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163724003362\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724003362","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Biotics as novel therapeutics in targeting signs of skin ageing via the gut-skin axis
Skin ageing is a phenomenon resulting from the aggregative changes to skin structure and function and is clinically manifested by physical features such as wrinkles, hyperpigmentation, elastosis, telangiectasia, and deterioration of skin barrier integrity. One of the main drivers of skin ageing, UV radiation, negatively influences the homeostasis of cells and tissues comprising the skin by triggering production of immune-mediated reactive oxygen species (ROS) and pro-inflammatory cytokines, as well as a various hormones and neuropeptides. Interestingly, an established link between the gut and the skin coined the ‘gut-skin axis’ has been demonstrated, with dysbiosis and gut barrier dysfunction frequently observed in certain inflammatory skin conditions and more recently, implicated in skin ageing. Therapeutic use of ‘biotics’ including prebiotics, probiotics, postbiotics, and synbiotics, which modulate the gut microbiota and production of microbially associated metabolites, influence the activity of the gut mucosal and immune systems and are showing promise as key candidates in addressing signs of skin ageing. In this review we aim to focus on the structure and function of the gut-skin axis and showcase the recent in-vitro and clinical evidence demonstrating the beneficial effects of select biotics in targeting signs of skin ageing and discuss the proposed mechanisms mediated via the gut-skin axis underpinning these effects.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.