Yaren Yesilbas Aksel , Elif Nur Barut , Seckin Engin
{"title":"福沙匹坦通过减轻炎症反应改善环磷酰胺诱发的小鼠膀胱损伤。","authors":"Yaren Yesilbas Aksel , Elif Nur Barut , Seckin Engin","doi":"10.1016/j.taap.2024.117120","DOIUrl":null,"url":null,"abstract":"<div><div>Inhibition of inflammatory process is a key therapeutic target for the treatment of interstitial cystitis (IC). Recent reports indicate that neurokinin 1 receptor (NK1R) antagonists have beneficial roles in inflammatory-based diseases. Herein, we investigate the protective effects of fosaprepitant (FOS), a NK1R antagonist, in cyclophosphamide (CP)-induced cystitis. The cystitis model was established multiple CP (80 mg/kg; i.p.) injection one day apart, and mice were treated with FOS (20 and 60 mg/kg/day; i.p.) for seven consecutive days. Detrusor contractility, vesical vascular permeability, myeloperoxidase (MPO) activity and protein expression levels of the TLR4 pathway were evaluated in mice bladder. Carbachol and electric field stimulation-evoked contractions of detrusor strips were significantly increased in CP-treated mice, which was significantly attenuated by FOS (60 mg/kg/day) treatment (p<0.001, p<0.05). Notably, vesical vascular permeability was markedly impaired in CP-induced cystitis, that was restored by FOS (60 mg/kg/day) treatment (p<0.01). MPO activity was significantly increased in cystitis group whereas FOS (20 and 60 mg/kg/day) treatment remarkably suppressed MPO activity in bladder tissue (p<0.001). Although TLR4 expression increased with cystitis, MyD88 and p-NFκB<sup>Ser536</sup>/total NFκB did not change, FOS (20 and 60 mg/kg/day) treatment caused a dramatic decrease in TLR4 expression (p<0.001), indicating the anti-inflammatory effect of FOS. In conclusion, FOS improved detrusor overactivity and inflammatory response by inhibiting MPO activity and TLR4 expression, resulting in functional and histological recovery in CP-induced cystitis.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"492 ","pages":"Article 117120"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fosaprepitant improves cyclophosphamide-induced bladder damage by alleviating inflammatory response in mice\",\"authors\":\"Yaren Yesilbas Aksel , Elif Nur Barut , Seckin Engin\",\"doi\":\"10.1016/j.taap.2024.117120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inhibition of inflammatory process is a key therapeutic target for the treatment of interstitial cystitis (IC). Recent reports indicate that neurokinin 1 receptor (NK1R) antagonists have beneficial roles in inflammatory-based diseases. Herein, we investigate the protective effects of fosaprepitant (FOS), a NK1R antagonist, in cyclophosphamide (CP)-induced cystitis. The cystitis model was established multiple CP (80 mg/kg; i.p.) injection one day apart, and mice were treated with FOS (20 and 60 mg/kg/day; i.p.) for seven consecutive days. Detrusor contractility, vesical vascular permeability, myeloperoxidase (MPO) activity and protein expression levels of the TLR4 pathway were evaluated in mice bladder. Carbachol and electric field stimulation-evoked contractions of detrusor strips were significantly increased in CP-treated mice, which was significantly attenuated by FOS (60 mg/kg/day) treatment (p<0.001, p<0.05). Notably, vesical vascular permeability was markedly impaired in CP-induced cystitis, that was restored by FOS (60 mg/kg/day) treatment (p<0.01). MPO activity was significantly increased in cystitis group whereas FOS (20 and 60 mg/kg/day) treatment remarkably suppressed MPO activity in bladder tissue (p<0.001). Although TLR4 expression increased with cystitis, MyD88 and p-NFκB<sup>Ser536</sup>/total NFκB did not change, FOS (20 and 60 mg/kg/day) treatment caused a dramatic decrease in TLR4 expression (p<0.001), indicating the anti-inflammatory effect of FOS. In conclusion, FOS improved detrusor overactivity and inflammatory response by inhibiting MPO activity and TLR4 expression, resulting in functional and histological recovery in CP-induced cystitis.</div></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":\"492 \",\"pages\":\"Article 117120\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X24003193\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24003193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Fosaprepitant improves cyclophosphamide-induced bladder damage by alleviating inflammatory response in mice
Inhibition of inflammatory process is a key therapeutic target for the treatment of interstitial cystitis (IC). Recent reports indicate that neurokinin 1 receptor (NK1R) antagonists have beneficial roles in inflammatory-based diseases. Herein, we investigate the protective effects of fosaprepitant (FOS), a NK1R antagonist, in cyclophosphamide (CP)-induced cystitis. The cystitis model was established multiple CP (80 mg/kg; i.p.) injection one day apart, and mice were treated with FOS (20 and 60 mg/kg/day; i.p.) for seven consecutive days. Detrusor contractility, vesical vascular permeability, myeloperoxidase (MPO) activity and protein expression levels of the TLR4 pathway were evaluated in mice bladder. Carbachol and electric field stimulation-evoked contractions of detrusor strips were significantly increased in CP-treated mice, which was significantly attenuated by FOS (60 mg/kg/day) treatment (p<0.001, p<0.05). Notably, vesical vascular permeability was markedly impaired in CP-induced cystitis, that was restored by FOS (60 mg/kg/day) treatment (p<0.01). MPO activity was significantly increased in cystitis group whereas FOS (20 and 60 mg/kg/day) treatment remarkably suppressed MPO activity in bladder tissue (p<0.001). Although TLR4 expression increased with cystitis, MyD88 and p-NFκBSer536/total NFκB did not change, FOS (20 and 60 mg/kg/day) treatment caused a dramatic decrease in TLR4 expression (p<0.001), indicating the anti-inflammatory effect of FOS. In conclusion, FOS improved detrusor overactivity and inflammatory response by inhibiting MPO activity and TLR4 expression, resulting in functional and histological recovery in CP-induced cystitis.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.