Ying Tian, Hang Chen, Jie Zhao, Geng Tian, Haibin Qu
{"title":"基于成像监测的滴丸熔融材料流变特性研究","authors":"Ying Tian, Hang Chen, Jie Zhao, Geng Tian, Haibin Qu","doi":"10.1002/pca.3457","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Rheological properties, as critical material attributes (CMAs) of solid dispersion drugs such as dripping pills, affect the melting, dispersion, and solidification. Therefore, characterization and assessments of rheological properties in the pharmaceutical process are important in enhancing drug stability and bioavailability.</p><p><strong>Objectives: </strong>The study aimed to develop a method for analyzing the rheology of molten materials, assessing their consistency and how rheological properties affect the dripping process and pills quality.</p><p><strong>Materials and methods: </strong>The rheological behavior of molten materials composed of Ginkgo biloba leaf extract (GBE) and polyethylene glycol (PEG) 4000 was characterized. Batch consistency of molten materials was evaluated. Image monitoring technology was utilized to capture and process images of the droplet formation process. We established the relationship between the rheological properties of molten materials and various attributes.</p><p><strong>Results: </strong>The quality consistency of molten materials was evaluated, with 12 batches showing similarity above 0.8. The MLR models showed strong correlations (R<sup>2</sup> > 0.80) between rheological properties and evaluation attributes. The rheological properties, including consistency coefficient, flow index, and viscosity at 80°C, were identified as critical rheological properties of the molten materials. Rheological property differences of molten materials have an impact on the morphology of droplet and quality performance.</p><p><strong>Conclusion: </strong>A rheological method was established, enabling quality consistency evaluation of molten materials in dripping pills. This study revealed the influence of rheological properties on droplet formation process and dripping pills quality, providing a reference for researches on material attributes control of other traditional Chinese medicine dripping pills.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Rheological Properties of Molten Materials for Dripping Pills Based on Imaging Monitoring.\",\"authors\":\"Ying Tian, Hang Chen, Jie Zhao, Geng Tian, Haibin Qu\",\"doi\":\"10.1002/pca.3457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Rheological properties, as critical material attributes (CMAs) of solid dispersion drugs such as dripping pills, affect the melting, dispersion, and solidification. Therefore, characterization and assessments of rheological properties in the pharmaceutical process are important in enhancing drug stability and bioavailability.</p><p><strong>Objectives: </strong>The study aimed to develop a method for analyzing the rheology of molten materials, assessing their consistency and how rheological properties affect the dripping process and pills quality.</p><p><strong>Materials and methods: </strong>The rheological behavior of molten materials composed of Ginkgo biloba leaf extract (GBE) and polyethylene glycol (PEG) 4000 was characterized. Batch consistency of molten materials was evaluated. Image monitoring technology was utilized to capture and process images of the droplet formation process. We established the relationship between the rheological properties of molten materials and various attributes.</p><p><strong>Results: </strong>The quality consistency of molten materials was evaluated, with 12 batches showing similarity above 0.8. The MLR models showed strong correlations (R<sup>2</sup> > 0.80) between rheological properties and evaluation attributes. The rheological properties, including consistency coefficient, flow index, and viscosity at 80°C, were identified as critical rheological properties of the molten materials. Rheological property differences of molten materials have an impact on the morphology of droplet and quality performance.</p><p><strong>Conclusion: </strong>A rheological method was established, enabling quality consistency evaluation of molten materials in dripping pills. This study revealed the influence of rheological properties on droplet formation process and dripping pills quality, providing a reference for researches on material attributes control of other traditional Chinese medicine dripping pills.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3457\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3457","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigation of Rheological Properties of Molten Materials for Dripping Pills Based on Imaging Monitoring.
Introduction: Rheological properties, as critical material attributes (CMAs) of solid dispersion drugs such as dripping pills, affect the melting, dispersion, and solidification. Therefore, characterization and assessments of rheological properties in the pharmaceutical process are important in enhancing drug stability and bioavailability.
Objectives: The study aimed to develop a method for analyzing the rheology of molten materials, assessing their consistency and how rheological properties affect the dripping process and pills quality.
Materials and methods: The rheological behavior of molten materials composed of Ginkgo biloba leaf extract (GBE) and polyethylene glycol (PEG) 4000 was characterized. Batch consistency of molten materials was evaluated. Image monitoring technology was utilized to capture and process images of the droplet formation process. We established the relationship between the rheological properties of molten materials and various attributes.
Results: The quality consistency of molten materials was evaluated, with 12 batches showing similarity above 0.8. The MLR models showed strong correlations (R2 > 0.80) between rheological properties and evaluation attributes. The rheological properties, including consistency coefficient, flow index, and viscosity at 80°C, were identified as critical rheological properties of the molten materials. Rheological property differences of molten materials have an impact on the morphology of droplet and quality performance.
Conclusion: A rheological method was established, enabling quality consistency evaluation of molten materials in dripping pills. This study revealed the influence of rheological properties on droplet formation process and dripping pills quality, providing a reference for researches on material attributes control of other traditional Chinese medicine dripping pills.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.