{"title":"流行病学和转录组数据确定了铁超载与代谢功能障碍相关的脂肪肝和肝纤维化之间的联系。","authors":"Chunling Li , Mengqi Qu , Xiangfeng Tian , Wenyi Zhuang , Meng Zhu , Shengxia Lv , Yongsheng Zhang , Feiye Zhu","doi":"10.1016/j.nutres.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>The primary objective of this study was to examine the association between iron overload (IO), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatic fibrosis. We hypothesized that there is a significant association. Data from the NHANES (2017-2020) were analyzed to explore IO's impact on MASLD and hepatic fibrosis in U.S. adults. We assessed serum ferritin, controlled attenuation parameter (CAP), liver stiffness measurement (LSM), and various covariates. Gene expression data were sourced from the FerrDb V2 and GEO databases. Differential gene expression analysis, Protein-Protein Interaction (PPI) Network construction, and Gene Ontology (GO) and KEGG pathway enrichment analyses were performed. The study verified the link between MASLD, hepatic fibrosis, and iron overload hub genes. This study of 5927 participants, averaging 46.78 years of age, revealed significant correlations between serum ferritin and CAP, LSM, after adjusting for covariates. Threshold effect analysis indicated nonlinear associations between serum ferritin and CAP, LSM, with distinct patterns observed by age and gender. Moreover, the area under the ROC curve for serum ferritin with MASLD and hepatic fibrosis was 0.8272 and 0.8376, respectively, demonstrating its performance in assessing these conditions. Additionally, molecular analyses identified potential hub genes associated with iron overload and MASLD, and hepatic fibrosis, revealing the underlying mechanisms. Our study findings reveal an association between iron overload, MASLD, and hepatic fibrosis. Additionally, the hub genes may be implicated in iron overload and subsequently contribute to the progression of MASLD and hepatic fibrosis. These findings support precision nutrition strategies.</div></div>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"131 ","pages":"Pages 121-134"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidemiological and transcriptome data identify association between iron overload and metabolic dysfunction-associated steatotic liver disease and hepatic fibrosis\",\"authors\":\"Chunling Li , Mengqi Qu , Xiangfeng Tian , Wenyi Zhuang , Meng Zhu , Shengxia Lv , Yongsheng Zhang , Feiye Zhu\",\"doi\":\"10.1016/j.nutres.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary objective of this study was to examine the association between iron overload (IO), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatic fibrosis. We hypothesized that there is a significant association. Data from the NHANES (2017-2020) were analyzed to explore IO's impact on MASLD and hepatic fibrosis in U.S. adults. We assessed serum ferritin, controlled attenuation parameter (CAP), liver stiffness measurement (LSM), and various covariates. Gene expression data were sourced from the FerrDb V2 and GEO databases. Differential gene expression analysis, Protein-Protein Interaction (PPI) Network construction, and Gene Ontology (GO) and KEGG pathway enrichment analyses were performed. The study verified the link between MASLD, hepatic fibrosis, and iron overload hub genes. This study of 5927 participants, averaging 46.78 years of age, revealed significant correlations between serum ferritin and CAP, LSM, after adjusting for covariates. Threshold effect analysis indicated nonlinear associations between serum ferritin and CAP, LSM, with distinct patterns observed by age and gender. Moreover, the area under the ROC curve for serum ferritin with MASLD and hepatic fibrosis was 0.8272 and 0.8376, respectively, demonstrating its performance in assessing these conditions. Additionally, molecular analyses identified potential hub genes associated with iron overload and MASLD, and hepatic fibrosis, revealing the underlying mechanisms. Our study findings reveal an association between iron overload, MASLD, and hepatic fibrosis. Additionally, the hub genes may be implicated in iron overload and subsequently contribute to the progression of MASLD and hepatic fibrosis. These findings support precision nutrition strategies.</div></div>\",\"PeriodicalId\":19245,\"journal\":{\"name\":\"Nutrition Research\",\"volume\":\"131 \",\"pages\":\"Pages 121-134\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0271531724001258\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0271531724001258","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Epidemiological and transcriptome data identify association between iron overload and metabolic dysfunction-associated steatotic liver disease and hepatic fibrosis
The primary objective of this study was to examine the association between iron overload (IO), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatic fibrosis. We hypothesized that there is a significant association. Data from the NHANES (2017-2020) were analyzed to explore IO's impact on MASLD and hepatic fibrosis in U.S. adults. We assessed serum ferritin, controlled attenuation parameter (CAP), liver stiffness measurement (LSM), and various covariates. Gene expression data were sourced from the FerrDb V2 and GEO databases. Differential gene expression analysis, Protein-Protein Interaction (PPI) Network construction, and Gene Ontology (GO) and KEGG pathway enrichment analyses were performed. The study verified the link between MASLD, hepatic fibrosis, and iron overload hub genes. This study of 5927 participants, averaging 46.78 years of age, revealed significant correlations between serum ferritin and CAP, LSM, after adjusting for covariates. Threshold effect analysis indicated nonlinear associations between serum ferritin and CAP, LSM, with distinct patterns observed by age and gender. Moreover, the area under the ROC curve for serum ferritin with MASLD and hepatic fibrosis was 0.8272 and 0.8376, respectively, demonstrating its performance in assessing these conditions. Additionally, molecular analyses identified potential hub genes associated with iron overload and MASLD, and hepatic fibrosis, revealing the underlying mechanisms. Our study findings reveal an association between iron overload, MASLD, and hepatic fibrosis. Additionally, the hub genes may be implicated in iron overload and subsequently contribute to the progression of MASLD and hepatic fibrosis. These findings support precision nutrition strategies.
期刊介绍:
Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease.
Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.