{"title":"早期牛奶αS1-酪蛋白过敏会诱发小鼠星形胶质细胞的活化并导致成年期的应激脆弱性","authors":"Kai Zhang, Lina Zhang, Yaqiong Jian, Xue Tang, Mengyu Han, Zhiping Pu, Yiqian Zhang, Peng Zhou","doi":"10.1021/acs.jafc.4c05425","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the incidence of food allergies in children has been increasing annually, significantly affecting the quality of life for patients and their families. It has long been suspected that childhood allergies might potentially lead to behavioral and psychological issues in adulthood, but the specific connection remains unclear. In this study, we established a model of young mice allergic to milk α<sub>S1</sub>-casein, conducted behavioral tests, and employed transcriptomics, immunohistochemistry, Golgi staining, and fecal microbiota transplantation to explore the link between early life allergies and adult psychological problems. The results showed that early life milk protein allergy significantly increased intestinal epithelial permeability in mice, leading to the translocation of gut microbiota metabolites. This process subsequently activated astrocyte lysosomes via SLC15a3, making astrocytes more susceptible. This susceptibility caused mice with early life milk protein allergy to have more activated astrocytes and excessive dendritic spine phagocytosis (normal group: 5.4 ± 1.26 spines/10 μm, allergy group: 3.2 ± 0.92 spines/10 μm) under acute stress in adulthood, leading to anxiety and depressive behaviors.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":"23493-23510"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early-Life Milk α<sub>S1</sub>-Casein Allergy Induces the Activation of Astrocytes in Mice and Leads to Stress Vulnerability in Adulthood.\",\"authors\":\"Kai Zhang, Lina Zhang, Yaqiong Jian, Xue Tang, Mengyu Han, Zhiping Pu, Yiqian Zhang, Peng Zhou\",\"doi\":\"10.1021/acs.jafc.4c05425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the incidence of food allergies in children has been increasing annually, significantly affecting the quality of life for patients and their families. It has long been suspected that childhood allergies might potentially lead to behavioral and psychological issues in adulthood, but the specific connection remains unclear. In this study, we established a model of young mice allergic to milk α<sub>S1</sub>-casein, conducted behavioral tests, and employed transcriptomics, immunohistochemistry, Golgi staining, and fecal microbiota transplantation to explore the link between early life allergies and adult psychological problems. The results showed that early life milk protein allergy significantly increased intestinal epithelial permeability in mice, leading to the translocation of gut microbiota metabolites. This process subsequently activated astrocyte lysosomes via SLC15a3, making astrocytes more susceptible. This susceptibility caused mice with early life milk protein allergy to have more activated astrocytes and excessive dendritic spine phagocytosis (normal group: 5.4 ± 1.26 spines/10 μm, allergy group: 3.2 ± 0.92 spines/10 μm) under acute stress in adulthood, leading to anxiety and depressive behaviors.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\" \",\"pages\":\"23493-23510\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c05425\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c05425","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Early-Life Milk αS1-Casein Allergy Induces the Activation of Astrocytes in Mice and Leads to Stress Vulnerability in Adulthood.
In recent years, the incidence of food allergies in children has been increasing annually, significantly affecting the quality of life for patients and their families. It has long been suspected that childhood allergies might potentially lead to behavioral and psychological issues in adulthood, but the specific connection remains unclear. In this study, we established a model of young mice allergic to milk αS1-casein, conducted behavioral tests, and employed transcriptomics, immunohistochemistry, Golgi staining, and fecal microbiota transplantation to explore the link between early life allergies and adult psychological problems. The results showed that early life milk protein allergy significantly increased intestinal epithelial permeability in mice, leading to the translocation of gut microbiota metabolites. This process subsequently activated astrocyte lysosomes via SLC15a3, making astrocytes more susceptible. This susceptibility caused mice with early life milk protein allergy to have more activated astrocytes and excessive dendritic spine phagocytosis (normal group: 5.4 ± 1.26 spines/10 μm, allergy group: 3.2 ± 0.92 spines/10 μm) under acute stress in adulthood, leading to anxiety and depressive behaviors.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.