Namjung Kim, Dongseok Lee, Chanyoung Kim, Dosung Lee, Youngjoon Hong
{"title":"潜空间中的简单算术运算可生成新型三维图形超材料","authors":"Namjung Kim, Dongseok Lee, Chanyoung Kim, Dosung Lee, Youngjoon Hong","doi":"10.1038/s41524-024-01430-3","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in artificial intelligence (AI)-based design strategies for metamaterials have revolutionized the creation of customizable architectures spanning nano- to macro-scale dimensions. However, their increasing complexity poses challenges in generating diverse metamaterials, hindering widespread adoption. Here, we introduce an innovative design strategy for three-dimensional graph metamaterials through simple arithmetic operations within the latent space. By leveraging carefully designed hidden representations of disentangled latent space and diffusion processes, our method unravels design space complexity, generating diverse graph metamaterials with comprehensive understanding. This versatile methodology facilitates the creation of graph metamaterials ranging from repetitive lattices to functionally graded materials. We believe that this methodology represents a foundational step in advancing our comprehension of the intricate latent design space, offering the potential to establish a unified model for various traditional generative models in the realm of graph metamaterials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"227 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple arithmetic operation in latent space can generate a novel three-dimensional graph metamaterials\",\"authors\":\"Namjung Kim, Dongseok Lee, Chanyoung Kim, Dosung Lee, Youngjoon Hong\",\"doi\":\"10.1038/s41524-024-01430-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancements in artificial intelligence (AI)-based design strategies for metamaterials have revolutionized the creation of customizable architectures spanning nano- to macro-scale dimensions. However, their increasing complexity poses challenges in generating diverse metamaterials, hindering widespread adoption. Here, we introduce an innovative design strategy for three-dimensional graph metamaterials through simple arithmetic operations within the latent space. By leveraging carefully designed hidden representations of disentangled latent space and diffusion processes, our method unravels design space complexity, generating diverse graph metamaterials with comprehensive understanding. This versatile methodology facilitates the creation of graph metamaterials ranging from repetitive lattices to functionally graded materials. We believe that this methodology represents a foundational step in advancing our comprehension of the intricate latent design space, offering the potential to establish a unified model for various traditional generative models in the realm of graph metamaterials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"227 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01430-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01430-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Simple arithmetic operation in latent space can generate a novel three-dimensional graph metamaterials
Recent advancements in artificial intelligence (AI)-based design strategies for metamaterials have revolutionized the creation of customizable architectures spanning nano- to macro-scale dimensions. However, their increasing complexity poses challenges in generating diverse metamaterials, hindering widespread adoption. Here, we introduce an innovative design strategy for three-dimensional graph metamaterials through simple arithmetic operations within the latent space. By leveraging carefully designed hidden representations of disentangled latent space and diffusion processes, our method unravels design space complexity, generating diverse graph metamaterials with comprehensive understanding. This versatile methodology facilitates the creation of graph metamaterials ranging from repetitive lattices to functionally graded materials. We believe that this methodology represents a foundational step in advancing our comprehension of the intricate latent design space, offering the potential to establish a unified model for various traditional generative models in the realm of graph metamaterials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.