髁状突颈部倾斜和逆时针旋转对颞下颌关节应力分布的影响。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Samira Alizada, Nurettin Diker, Dogan Dolanmaz
{"title":"髁状突颈部倾斜和逆时针旋转对颞下颌关节应力分布的影响。","authors":"Samira Alizada, Nurettin Diker, Dogan Dolanmaz","doi":"10.1080/10255842.2024.2410229","DOIUrl":null,"url":null,"abstract":"<p><p>Three different kinds of condylar inclination were manually modelled anteriorly inclined condylar neck, vertical condylar neck, and posteriorly inclined condylar neck. Three different maxillary impactions were simulated to evaluate the effect of counterclockwise rotation. The von Misses stresses of the disc, compressive stresses of the glenoid fossa, and compressive stresses of the condyle were the highest in the models with posteriorly inclined neck and lowest in the models with vertical condylar neck design. Stresses of the temporomandibular joint increase with the counterclockwise rotation of the maxilla-mandibular complex. The posteriorly inclined neck should be considered a risk factor for condylar resorption with increased counterclockwise rotation.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of condylar neck inclination and counterclockwise rotation on the stress distribution of the temporomandibular joint.\",\"authors\":\"Samira Alizada, Nurettin Diker, Dogan Dolanmaz\",\"doi\":\"10.1080/10255842.2024.2410229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three different kinds of condylar inclination were manually modelled anteriorly inclined condylar neck, vertical condylar neck, and posteriorly inclined condylar neck. Three different maxillary impactions were simulated to evaluate the effect of counterclockwise rotation. The von Misses stresses of the disc, compressive stresses of the glenoid fossa, and compressive stresses of the condyle were the highest in the models with posteriorly inclined neck and lowest in the models with vertical condylar neck design. Stresses of the temporomandibular joint increase with the counterclockwise rotation of the maxilla-mandibular complex. The posteriorly inclined neck should be considered a risk factor for condylar resorption with increased counterclockwise rotation.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2410229\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2410229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

人工模拟了三种不同的髁状突倾斜度:前倾髁状突颈部、垂直髁状突颈部和后倾髁状突颈部。模拟了三种不同的上颌骨撞击,以评估逆时针旋转的影响。椎间盘的von Misses应力、盂窝的压缩应力和髁突的压缩应力在髁颈后倾的模型中最高,而在髁颈垂直的模型中最低。颞下颌关节的应力随着上颌骨-下颌骨复合体的逆时针旋转而增加。随着逆时针旋转的增加,后倾颈部应被视为髁突吸收的风险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of condylar neck inclination and counterclockwise rotation on the stress distribution of the temporomandibular joint.

Three different kinds of condylar inclination were manually modelled anteriorly inclined condylar neck, vertical condylar neck, and posteriorly inclined condylar neck. Three different maxillary impactions were simulated to evaluate the effect of counterclockwise rotation. The von Misses stresses of the disc, compressive stresses of the glenoid fossa, and compressive stresses of the condyle were the highest in the models with posteriorly inclined neck and lowest in the models with vertical condylar neck design. Stresses of the temporomandibular joint increase with the counterclockwise rotation of the maxilla-mandibular complex. The posteriorly inclined neck should be considered a risk factor for condylar resorption with increased counterclockwise rotation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信