使用振动搅拌器的实验室规模生物反应器的机械和几何因素对哺乳动物细胞培养指数影响的定量研究。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sepehr Govara, S M Hosseinalipour, Masoud Soleimani
{"title":"使用振动搅拌器的实验室规模生物反应器的机械和几何因素对哺乳动物细胞培养指数影响的定量研究。","authors":"Sepehr Govara, S M Hosseinalipour, Masoud Soleimani","doi":"10.1007/s00449-024-03095-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative investigation of the effect of mechanical and geometrical factors of a laboratory-scale bioreactor using a vibrating agitator on mammalian cell culture indices.\",\"authors\":\"Sepehr Govara, S M Hosseinalipour, Masoud Soleimani\",\"doi\":\"10.1007/s00449-024-03095-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03095-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03095-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

实验室中的哺乳动物细胞培养有静态和动态两种方法,动态模式下的细胞生长指数更高。在这项研究中,使用振动盘和合适的装置制作了实验室规模的搅拌生物反应器,用于动态细胞培养,在低剪切应力下进行适当的混合。采用 Box-Behnken 设计,以 Raji 细胞为研究对象进行了 15 次批量实验,定量研究了该生物反应器的机械和几何因素对细胞培养指标的影响。选择了三个结构因素作为主要因素,包括圆盘直径、振动幅度和圆盘放置高度。三个细胞生长指数包括特定生长率、最大细胞浓度和生产率,被视为生物反应。结果模型能准确预测不同因素设置下的各项指标值。结果表明,在所研究的因素中,圆盘直径的影响最大。此外,使用振幅为 2.5 至 3(毫米)、放置高度为 40 至 60(毫米)的 25(毫米)圆盘,比生长率、最大细胞浓度的自然对数和生产率分别约为 0.033(1/h)、13.2 和 5133(细胞/hmL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative investigation of the effect of mechanical and geometrical factors of a laboratory-scale bioreactor using a vibrating agitator on mammalian cell culture indices.

Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信