Sepehr Govara, S M Hosseinalipour, Masoud Soleimani
{"title":"使用振动搅拌器的实验室规模生物反应器的机械和几何因素对哺乳动物细胞培养指数影响的定量研究。","authors":"Sepehr Govara, S M Hosseinalipour, Masoud Soleimani","doi":"10.1007/s00449-024-03095-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative investigation of the effect of mechanical and geometrical factors of a laboratory-scale bioreactor using a vibrating agitator on mammalian cell culture indices.\",\"authors\":\"Sepehr Govara, S M Hosseinalipour, Masoud Soleimani\",\"doi\":\"10.1007/s00449-024-03095-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03095-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03095-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Quantitative investigation of the effect of mechanical and geometrical factors of a laboratory-scale bioreactor using a vibrating agitator on mammalian cell culture indices.
Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.