通过采用 Ti 插入层和 C-V 测量增强 Hf 基薄膜电容器的铁电性,构建高能效储能计算网络

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bo Chen, Yifang Wu, Yizhi Liu, Xiaopeng Li, Lu Tai, Pengpeng Sang, Jixuan Wu, Xuepeng Zhan, Jiezhi Chen
{"title":"通过采用 Ti 插入层和 C-V 测量增强 Hf 基薄膜电容器的铁电性,构建高能效储能计算网络","authors":"Bo Chen, Yifang Wu, Yizhi Liu, Xiaopeng Li, Lu Tai, Pengpeng Sang, Jixuan Wu, Xuepeng Zhan, Jiezhi Chen","doi":"10.1002/aelm.202400395","DOIUrl":null,"url":null,"abstract":"Hf-based ferroelectric memcapacitors only consume dynamic power with the merits of reliable nonvolatile storage and Si-process compatibility, which is an outstanding artificial synapse for constructing energy-efficient neuromorphic computing networks. In this paper, the ferroelectricity of Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO) memcapacitor is improved by the co-optimization of process design and electrical measurement with various thicknesses of the Ti insertion layer and conditions of Capacitor–Voltage (C–V) tests. Material characterization indicates the Ti insertion layer reduces the <i>m</i>-phase and increases the ratio of the <i>o</i>-phase in HZO film. The wake-up-free behaviors are achieved in the Ti insertion layer memcapacitors with an endurance of ≈10<sup>9</sup> cycles. Furthermore, ferroelectric properties are further enhanced after C–V measurement with the 1nm-thick Ti insertion layer showing the largest remanent polarization (2Pr≈41.02 µC cm<sup>−2</sup>). Subsequently, a full hardware-implemented hierarchical parallel reservoir computing (RC) network is constructed using 34 HZO memcapacitive synapses. The proposed network achieves high recognition accuracy (≈96.10%) and low dynamic power consumption (≈0.15 fJ per input) with the MNIST dataset. These findings indicate the feasibility of developing a highly energy-efficient, fully hardware-implemented, hierarchical parallel RC neural network.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"47 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Ferroelectricity of Hf-Based Memcapacitors by Adopting Ti Insert-Layer and C–V Measurement for Constructing Energy-Efficient Reservoir Computing Network\",\"authors\":\"Bo Chen, Yifang Wu, Yizhi Liu, Xiaopeng Li, Lu Tai, Pengpeng Sang, Jixuan Wu, Xuepeng Zhan, Jiezhi Chen\",\"doi\":\"10.1002/aelm.202400395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hf-based ferroelectric memcapacitors only consume dynamic power with the merits of reliable nonvolatile storage and Si-process compatibility, which is an outstanding artificial synapse for constructing energy-efficient neuromorphic computing networks. In this paper, the ferroelectricity of Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO) memcapacitor is improved by the co-optimization of process design and electrical measurement with various thicknesses of the Ti insertion layer and conditions of Capacitor–Voltage (C–V) tests. Material characterization indicates the Ti insertion layer reduces the <i>m</i>-phase and increases the ratio of the <i>o</i>-phase in HZO film. The wake-up-free behaviors are achieved in the Ti insertion layer memcapacitors with an endurance of ≈10<sup>9</sup> cycles. Furthermore, ferroelectric properties are further enhanced after C–V measurement with the 1nm-thick Ti insertion layer showing the largest remanent polarization (2Pr≈41.02 µC cm<sup>−2</sup>). Subsequently, a full hardware-implemented hierarchical parallel reservoir computing (RC) network is constructed using 34 HZO memcapacitive synapses. The proposed network achieves high recognition accuracy (≈96.10%) and low dynamic power consumption (≈0.15 fJ per input) with the MNIST dataset. These findings indicate the feasibility of developing a highly energy-efficient, fully hardware-implemented, hierarchical parallel RC neural network.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400395\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400395","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铪基铁电记忆电容器只消耗动态功率,具有可靠的非易失性存储和硅工艺兼容性的优点,是构建高能效神经形态计算网络的优秀人工突触。本文通过工艺设计和电学测量的共同优化,采用不同厚度的钛插入层和电容电压(C-V)测试条件,提高了 Hf0.5Zr0.5O2 (HZO) 记忆电容器的铁电性。材料特性分析表明,钛插入层减少了 HZO 薄膜中的 m 相,增加了 o 相的比例。钛插入层记忆电容器实现了无唤醒行为,耐久性≈109 次。此外,铁电特性在 C-V 测量后得到进一步增强,1 纳米厚的钛插入层显示出最大的剩电极化(2Pr≈41.02 µC cm-2)。随后,利用 34 个 HZO Memcapacitive 突触构建了一个完全硬件实现的分层并行存储计算 (RC) 网络。在使用 MNIST 数据集时,该网络实现了较高的识别准确率(≈96.10%)和较低的动态功耗(每次输入≈0.15 fJ)。这些研究结果表明了开发高能效、全硬件实现、分层并行 RC 神经网络的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Ferroelectricity of Hf-Based Memcapacitors by Adopting Ti Insert-Layer and C–V Measurement for Constructing Energy-Efficient Reservoir Computing Network

Enhanced Ferroelectricity of Hf-Based Memcapacitors by Adopting Ti Insert-Layer and C–V Measurement for Constructing Energy-Efficient Reservoir Computing Network
Hf-based ferroelectric memcapacitors only consume dynamic power with the merits of reliable nonvolatile storage and Si-process compatibility, which is an outstanding artificial synapse for constructing energy-efficient neuromorphic computing networks. In this paper, the ferroelectricity of Hf0.5Zr0.5O2 (HZO) memcapacitor is improved by the co-optimization of process design and electrical measurement with various thicknesses of the Ti insertion layer and conditions of Capacitor–Voltage (C–V) tests. Material characterization indicates the Ti insertion layer reduces the m-phase and increases the ratio of the o-phase in HZO film. The wake-up-free behaviors are achieved in the Ti insertion layer memcapacitors with an endurance of ≈109 cycles. Furthermore, ferroelectric properties are further enhanced after C–V measurement with the 1nm-thick Ti insertion layer showing the largest remanent polarization (2Pr≈41.02 µC cm−2). Subsequently, a full hardware-implemented hierarchical parallel reservoir computing (RC) network is constructed using 34 HZO memcapacitive synapses. The proposed network achieves high recognition accuracy (≈96.10%) and low dynamic power consumption (≈0.15 fJ per input) with the MNIST dataset. These findings indicate the feasibility of developing a highly energy-efficient, fully hardware-implemented, hierarchical parallel RC neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信