STM2457 抑制 METTL3 介导的 miR-30c m6A 修饰,通过诱导 ATG5 介导的自噬缓解脊髓损伤。

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY
Neurospine Pub Date : 2024-09-01 Epub Date: 2024-09-30 DOI:10.14245/ns.2448494.247
Gang Chen, Zhitao Shangguan, Xiaoqing Ye, Zhi Chen, Jiandong Li, Wenge Liu
{"title":"STM2457 抑制 METTL3 介导的 miR-30c m6A 修饰,通过诱导 ATG5 介导的自噬缓解脊髓损伤。","authors":"Gang Chen, Zhitao Shangguan, Xiaoqing Ye, Zhi Chen, Jiandong Li, Wenge Liu","doi":"10.14245/ns.2448494.247","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aimed to investigate the role of N6-methyladenosine (m6A) modification in spinal cord injury (SCI) and its underlying mechanism, focusing on the interplay between m6A methyltransferase-like 3 (METTL3), miR-30c, and autophagy-related proteins.</p><p><strong>Methods: </strong>An SCI model was established in rats, and changes in autophagy-related proteins, m6A methylation levels, and miR-30c levels were analyzed. Hydrogen peroxide (H2O2)-stimulated spinal cord neuron cells (SCNCs) were used to assess the impact of METTL3 overexpression. The effects of STM2457, an antagonist of METTL3, were evaluated on cell viability, apoptosis, and autophagy markers in H2O2-stimulated SCNCs.</p><p><strong>Results: </strong>In the SCI model, decreased levels of autophagy markers and increased m6A methylation, miR-30c levels, and METTL3 were observed. Overexpression of METTL3 in SCNCs led to reduced cell viability, increased apoptosis, and suppressed autophagy. Conversely, co-overexpression of autophagy-related protein 5 (ATG5) or miR-30c inhibition reversed these effects. Knocking out METTL3 yielded opposite results. STM2457 treatment improved cell viability, reduced apoptosis, and upregulated autophagy markers in SCNCs, which also enhanced functional recovery in rats as measured by the Basso-Beattie-Bresnahan score and inclined plate test.</p><p><strong>Conclusion: </strong>STM2457 alleviated SCI by suppressing METTL3-mediated m6A modification of miR-30c, which in turn induces ATG5-mediated autophagy. This study provides insights into the role of m6A modification in SCI and suggests a potential therapeutic approach through targeting METTL3.</p>","PeriodicalId":19269,"journal":{"name":"Neurospine","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456927/pdf/","citationCount":"0","resultStr":"{\"title\":\"STM2457 Inhibits METTL3-Mediated m6A Modification of miR-30c to Alleviate Spinal Cord Injury by Inducing the ATG5-Mediated Autophagy.\",\"authors\":\"Gang Chen, Zhitao Shangguan, Xiaoqing Ye, Zhi Chen, Jiandong Li, Wenge Liu\",\"doi\":\"10.14245/ns.2448494.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The study aimed to investigate the role of N6-methyladenosine (m6A) modification in spinal cord injury (SCI) and its underlying mechanism, focusing on the interplay between m6A methyltransferase-like 3 (METTL3), miR-30c, and autophagy-related proteins.</p><p><strong>Methods: </strong>An SCI model was established in rats, and changes in autophagy-related proteins, m6A methylation levels, and miR-30c levels were analyzed. Hydrogen peroxide (H2O2)-stimulated spinal cord neuron cells (SCNCs) were used to assess the impact of METTL3 overexpression. The effects of STM2457, an antagonist of METTL3, were evaluated on cell viability, apoptosis, and autophagy markers in H2O2-stimulated SCNCs.</p><p><strong>Results: </strong>In the SCI model, decreased levels of autophagy markers and increased m6A methylation, miR-30c levels, and METTL3 were observed. Overexpression of METTL3 in SCNCs led to reduced cell viability, increased apoptosis, and suppressed autophagy. Conversely, co-overexpression of autophagy-related protein 5 (ATG5) or miR-30c inhibition reversed these effects. Knocking out METTL3 yielded opposite results. STM2457 treatment improved cell viability, reduced apoptosis, and upregulated autophagy markers in SCNCs, which also enhanced functional recovery in rats as measured by the Basso-Beattie-Bresnahan score and inclined plate test.</p><p><strong>Conclusion: </strong>STM2457 alleviated SCI by suppressing METTL3-mediated m6A modification of miR-30c, which in turn induces ATG5-mediated autophagy. This study provides insights into the role of m6A modification in SCI and suggests a potential therapeutic approach through targeting METTL3.</p>\",\"PeriodicalId\":19269,\"journal\":{\"name\":\"Neurospine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456927/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurospine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14245/ns.2448494.247\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurospine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14245/ns.2448494.247","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的该研究旨在探讨N6-甲基腺苷(m6A)修饰在脊髓损伤(SCI)中的作用及其内在机制,重点研究m6A甲基转移酶样3(METTL3)、miR-30c和自噬相关蛋白之间的相互作用:方法:在大鼠体内建立 SCI 模型,分析自噬相关蛋白、m6A 甲基化水平和 miR-30c 水平的变化。用过氧化氢(H2O2)刺激脊髓神经元细胞(SCNCs)来评估METTL3过表达的影响。评估了METTL3拮抗剂STM2457对H2O2刺激的脊髓神经元细胞的细胞活力、凋亡和自噬标记物的影响:结果:在 SCI 模型中,观察到自噬标记物水平降低,m6A 甲基化、miR-30c 水平和 METTL3 水平升高。在 SCNCs 中过表达 METTL3 会导致细胞活力降低、凋亡增加和自噬抑制。相反,联合表达自噬相关蛋白5(ATG5)或抑制miR-30c可逆转这些影响。敲除 METTL3 产生了相反的结果。STM2457治疗可提高SCNCs的细胞活力、减少细胞凋亡并上调自噬标记物,通过巴索-巴蒂-布雷斯纳汉评分和斜板试验衡量,这也增强了大鼠的功能恢复:STM2457通过抑制METTL3介导的miR-30c的m6A修饰,进而诱导ATG5介导的自噬,缓解了SCI。这项研究深入揭示了m6A修饰在SCI中的作用,并提出了通过靶向METTL3进行治疗的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STM2457 Inhibits METTL3-Mediated m6A Modification of miR-30c to Alleviate Spinal Cord Injury by Inducing the ATG5-Mediated Autophagy.

Objective: The study aimed to investigate the role of N6-methyladenosine (m6A) modification in spinal cord injury (SCI) and its underlying mechanism, focusing on the interplay between m6A methyltransferase-like 3 (METTL3), miR-30c, and autophagy-related proteins.

Methods: An SCI model was established in rats, and changes in autophagy-related proteins, m6A methylation levels, and miR-30c levels were analyzed. Hydrogen peroxide (H2O2)-stimulated spinal cord neuron cells (SCNCs) were used to assess the impact of METTL3 overexpression. The effects of STM2457, an antagonist of METTL3, were evaluated on cell viability, apoptosis, and autophagy markers in H2O2-stimulated SCNCs.

Results: In the SCI model, decreased levels of autophagy markers and increased m6A methylation, miR-30c levels, and METTL3 were observed. Overexpression of METTL3 in SCNCs led to reduced cell viability, increased apoptosis, and suppressed autophagy. Conversely, co-overexpression of autophagy-related protein 5 (ATG5) or miR-30c inhibition reversed these effects. Knocking out METTL3 yielded opposite results. STM2457 treatment improved cell viability, reduced apoptosis, and upregulated autophagy markers in SCNCs, which also enhanced functional recovery in rats as measured by the Basso-Beattie-Bresnahan score and inclined plate test.

Conclusion: STM2457 alleviated SCI by suppressing METTL3-mediated m6A modification of miR-30c, which in turn induces ATG5-mediated autophagy. This study provides insights into the role of m6A modification in SCI and suggests a potential therapeutic approach through targeting METTL3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurospine
Neurospine Multiple-
CiteScore
5.80
自引率
18.80%
发文量
93
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信